Optimal. Leaf size=28 \[ x-x \log (4) \left (3+3 \left (3-\frac {(-x+\log (x)) \log (2 x)}{e^5}\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 60, normalized size of antiderivative = 2.14, number of steps used = 12, number of rules used = 6, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {12, 2295, 6688, 6742, 2304, 2361} \begin {gather*} -\frac {3 x^2 \log (4) \log (2 x)}{e^5}+\frac {3 x^2 \log (4)}{2 e^5}+x+\frac {3 x \log (4) \log (x) \log (2 x)}{e^5}-\frac {3 \left (x+4 e^5\right )^2 \log (4)}{2 e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rule 2304
Rule 2361
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^5+\left (-12 e^5-3 x\right ) \log (4)+3 \log (4) \log (x)+((3-6 x) \log (4)+3 \log (4) \log (x)) \log (2 x)\right ) \, dx}{e^5}\\ &=x-\frac {3 \left (4 e^5+x\right )^2 \log (4)}{2 e^5}+\frac {\int ((3-6 x) \log (4)+3 \log (4) \log (x)) \log (2 x) \, dx}{e^5}+\frac {(3 \log (4)) \int \log (x) \, dx}{e^5}\\ &=x-\frac {3 x \log (4)}{e^5}-\frac {3 \left (4 e^5+x\right )^2 \log (4)}{2 e^5}+\frac {3 x \log (4) \log (x)}{e^5}+\frac {\int 3 \log (4) (1-2 x+\log (x)) \log (2 x) \, dx}{e^5}\\ &=x-\frac {3 x \log (4)}{e^5}-\frac {3 \left (4 e^5+x\right )^2 \log (4)}{2 e^5}+\frac {3 x \log (4) \log (x)}{e^5}+\frac {(3 \log (4)) \int (1-2 x+\log (x)) \log (2 x) \, dx}{e^5}\\ &=x-\frac {3 x \log (4)}{e^5}-\frac {3 \left (4 e^5+x\right )^2 \log (4)}{2 e^5}+\frac {3 x \log (4) \log (x)}{e^5}+\frac {(3 \log (4)) \int (\log (2 x)-2 x \log (2 x)+\log (x) \log (2 x)) \, dx}{e^5}\\ &=x-\frac {3 x \log (4)}{e^5}-\frac {3 \left (4 e^5+x\right )^2 \log (4)}{2 e^5}+\frac {3 x \log (4) \log (x)}{e^5}+\frac {(3 \log (4)) \int \log (2 x) \, dx}{e^5}+\frac {(3 \log (4)) \int \log (x) \log (2 x) \, dx}{e^5}-\frac {(6 \log (4)) \int x \log (2 x) \, dx}{e^5}\\ &=x-\frac {6 x \log (4)}{e^5}+\frac {3 x^2 \log (4)}{2 e^5}-\frac {3 \left (4 e^5+x\right )^2 \log (4)}{2 e^5}+\frac {3 x \log (4) \log (x)}{e^5}-\frac {3 x^2 \log (4) \log (2 x)}{e^5}+\frac {3 x \log (4) \log (x) \log (2 x)}{e^5}-\frac {(3 \log (4)) \int (-1+\log (x)) \, dx}{e^5}\\ &=x-\frac {3 x \log (4)}{e^5}+\frac {3 x^2 \log (4)}{2 e^5}-\frac {3 \left (4 e^5+x\right )^2 \log (4)}{2 e^5}+\frac {3 x \log (4) \log (x)}{e^5}-\frac {3 x^2 \log (4) \log (2 x)}{e^5}+\frac {3 x \log (4) \log (x) \log (2 x)}{e^5}-\frac {(3 \log (4)) \int \log (x) \, dx}{e^5}\\ &=x+\frac {3 x^2 \log (4)}{2 e^5}-\frac {3 \left (4 e^5+x\right )^2 \log (4)}{2 e^5}-\frac {3 x^2 \log (4) \log (2 x)}{e^5}+\frac {3 x \log (4) \log (x) \log (2 x)}{e^5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 30, normalized size = 1.07 \begin {gather*} \frac {x \left (e^5 (1-12 \log (4))+3 \log (4) (-x+\log (x)) \log (2 x)\right )}{e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 53, normalized size = 1.89 \begin {gather*} -{\left (6 \, x^{2} \log \relax (2)^{2} - 6 \, x \log \relax (2) \log \relax (x)^{2} + 24 \, x e^{5} \log \relax (2) - x e^{5} + 6 \, {\left (x^{2} \log \relax (2) - x \log \relax (2)^{2}\right )} \log \relax (x)\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 90, normalized size = 3.21 \begin {gather*} -{\left (6 \, x^{2} \log \relax (2)^{2} + 6 \, x^{2} \log \relax (2) \log \relax (x) - 6 \, x \log \relax (2)^{2} \log \relax (x) - 6 \, x \log \relax (2) \log \relax (x)^{2} - 3 \, x^{2} \log \relax (2) + 6 \, x \log \relax (2) \log \relax (x) - x e^{5} + 3 \, {\left (x^{2} + 8 \, x e^{5}\right )} \log \relax (2) - 6 \, {\left (x \log \relax (x) - x\right )} \log \relax (2) - 6 \, x \log \relax (2)\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 40, normalized size = 1.43
method | result | size |
norman | \(\left (-24 \ln \relax (2)+1\right ) x -6 x^{2} \ln \relax (2) {\mathrm e}^{-5} \ln \left (2 x \right )+6 \,{\mathrm e}^{-5} \ln \relax (2) x \ln \relax (x ) \ln \left (2 x \right )\) | \(40\) |
risch | \(6 \,{\mathrm e}^{-5} \ln \relax (2) \ln \relax (x )^{2} x +3 \,{\mathrm e}^{-5} \ln \relax (2) \left (2 x \ln \relax (2)-2 x^{2}\right ) \ln \relax (x )-6 \,{\mathrm e}^{-5} x^{2} \ln \relax (2)^{2}-24 x \ln \relax (2)+x\) | \(49\) |
default | \({\mathrm e}^{-5} \left (6 \ln \relax (x ) \ln \relax (2)^{2} x +6 \ln \relax (2) \ln \relax (x )^{2} x -6 x^{2} \ln \relax (2)^{2}-6 x^{2} \ln \relax (2) \ln \relax (x )-24 x \,{\mathrm e}^{5} \ln \relax (2)+x \,{\mathrm e}^{5}\right )\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 81, normalized size = 2.89 \begin {gather*} {\left (3 \, x^{2} \log \relax (2) - 6 \, x \log \relax (2) \log \relax (x) + x e^{5} - 3 \, {\left (x^{2} + 8 \, x e^{5}\right )} \log \relax (2) + 6 \, {\left (x \log \relax (x) - x\right )} \log \relax (2) + 6 \, x \log \relax (2) - 6 \, {\left ({\left (x^{2} - x\right )} \log \relax (2) - {\left (x \log \relax (x) - x\right )} \log \relax (2)\right )} \log \left (2 \, x\right )\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.79, size = 43, normalized size = 1.54 \begin {gather*} x\,{\mathrm {e}}^{-5}\,\left ({\mathrm {e}}^5+6\,\ln \relax (2)\,{\ln \relax (x)}^2+6\,{\ln \relax (2)}^2\,\ln \relax (x)-24\,{\mathrm {e}}^5\,\ln \relax (2)-6\,x\,{\ln \relax (2)}^2-6\,x\,\ln \relax (2)\,\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.32, size = 60, normalized size = 2.14 \begin {gather*} - \frac {6 x^{2} \log {\relax (2 )}^{2}}{e^{5}} + \frac {6 x \log {\relax (2 )} \log {\relax (x )}^{2}}{e^{5}} + x \left (1 - 24 \log {\relax (2 )}\right ) + \frac {\left (- 6 x^{2} \log {\relax (2 )} + 6 x \log {\relax (2 )}^{2}\right ) \log {\relax (x )}}{e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________