Optimal. Leaf size=32 \[ \frac {1}{3} \left (2+x-\frac {e^e}{\log \left (\frac {x^2}{9}\right )}+5 \log (5-x+\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.34, antiderivative size = 35, normalized size of antiderivative = 1.09, number of steps used = 9, number of rules used = 6, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {6741, 12, 6742, 6684, 2302, 30} \begin {gather*} -\frac {e^e}{3 \log \left (\frac {x^2}{9}\right )}+\frac {x}{3}+\frac {5}{3} \log (-x+\log (x)+5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2302
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^e (10-2 x)+2 e^e \log (x)+\left (5-x^2+x \log (x)\right ) \log ^2\left (\frac {x^2}{9}\right )}{3 x (5-x+\log (x)) \log ^2\left (\frac {x^2}{9}\right )} \, dx\\ &=\frac {1}{3} \int \frac {e^e (10-2 x)+2 e^e \log (x)+\left (5-x^2+x \log (x)\right ) \log ^2\left (\frac {x^2}{9}\right )}{x (5-x+\log (x)) \log ^2\left (\frac {x^2}{9}\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {-5+x^2-x \log (x)}{x (-5+x-\log (x))}+\frac {2 e^e}{x \log ^2\left (\frac {x^2}{9}\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {-5+x^2-x \log (x)}{x (-5+x-\log (x))} \, dx+\frac {1}{3} \left (2 e^e\right ) \int \frac {1}{x \log ^2\left (\frac {x^2}{9}\right )} \, dx\\ &=\frac {1}{3} \int \left (1+\frac {5 (-1+x)}{x (-5+x-\log (x))}\right ) \, dx+\frac {1}{3} e^e \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (\frac {x^2}{9}\right )\right )\\ &=\frac {x}{3}-\frac {e^e}{3 \log \left (\frac {x^2}{9}\right )}+\frac {5}{3} \int \frac {-1+x}{x (-5+x-\log (x))} \, dx\\ &=\frac {x}{3}-\frac {e^e}{3 \log \left (\frac {x^2}{9}\right )}+\frac {5}{3} \log (5-x+\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 31, normalized size = 0.97 \begin {gather*} \frac {1}{3} \left (x-\frac {e^e}{\log \left (\frac {x^2}{9}\right )}+5 \log (5-x+\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 42, normalized size = 1.31 \begin {gather*} \frac {2 \, x \log \relax (3) - 2 \, x \log \relax (x) + 10 \, {\left (\log \relax (3) - \log \relax (x)\right )} \log \left (-x + \log \relax (x) + 5\right ) + e^{e}}{6 \, {\left (\log \relax (3) - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 49, normalized size = 1.53 \begin {gather*} \frac {2 \, x \log \relax (3) - 2 \, x \log \relax (x) + 10 \, \log \relax (3) \log \left (-x + \log \relax (x) + 5\right ) - 10 \, \log \relax (x) \log \left (-x + \log \relax (x) + 5\right ) + e^{e}}{6 \, {\left (\log \relax (3) - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 80, normalized size = 2.50
method | result | size |
risch | \(\frac {x}{3}+\frac {2 i {\mathrm e}^{{\mathrm e}}}{3 \left (-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (3)-4 i \ln \relax (x )\right )}+\frac {5 \ln \left (\ln \relax (x )-x +5\right )}{3}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 36, normalized size = 1.12 \begin {gather*} \frac {2 \, x \log \relax (3) - 2 \, x \log \relax (x) + e^{e}}{6 \, {\left (\log \relax (3) - \log \relax (x)\right )}} + \frac {5}{3} \, \log \left (-x + \log \relax (x) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\left (x\,\ln \relax (x)-x^2+5\right )\,{\ln \left (\frac {x^2}{9}\right )}^2+2\,{\mathrm {e}}^{\mathrm {e}}\,\ln \relax (x)-{\mathrm {e}}^{\mathrm {e}}\,\left (2\,x-10\right )}{{\ln \left (\frac {x^2}{9}\right )}^2\,\left (15\,x+3\,x\,\ln \relax (x)-3\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 29, normalized size = 0.91 \begin {gather*} \frac {x}{3} + \frac {5 \log {\left (- x + \log {\relax (x )} + 5 \right )}}{3} - \frac {e^{e}}{6 \log {\relax (x )} - 6 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________