Optimal. Leaf size=27 \[ \frac {1}{8} \left (x-(3-e) \left (x-\left (-5+\frac {\log (x)}{x}\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 73, normalized size of antiderivative = 2.70, number of steps used = 11, number of rules used = 7, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {12, 14, 37, 2334, 43, 2305, 2304} \begin {gather*} \frac {(3-e) \log ^2(x)}{8 x^2}-\frac {(3-e) (5 x+1)^2 \log (x)}{8 x^2}+\frac {(3-e) \log (x)}{8 x^2}-\frac {1}{8} (2-e) x+\frac {25}{8} (3-e) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 37
Rule 43
Rule 2304
Rule 2305
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \frac {-30 x-2 x^3+e \left (10 x+x^3\right )+(6+e (-2-10 x)+30 x) \log (x)+(-6+2 e) \log ^2(x)}{x^3} \, dx\\ &=\frac {1}{8} \int \left (\frac {-10 (3-e)-(2-e) x^2}{x^2}-\frac {2 (-3+e) (1+5 x) \log (x)}{x^3}+\frac {2 (-3+e) \log ^2(x)}{x^3}\right ) \, dx\\ &=\frac {1}{8} \int \frac {-10 (3-e)-(2-e) x^2}{x^2} \, dx+\frac {1}{4} (3-e) \int \frac {(1+5 x) \log (x)}{x^3} \, dx+\frac {1}{4} (-3+e) \int \frac {\log ^2(x)}{x^3} \, dx\\ &=-\frac {(3-e) (1+5 x)^2 \log (x)}{8 x^2}+\frac {(3-e) \log ^2(x)}{8 x^2}+\frac {1}{8} \int \left (-2 \left (1-\frac {e}{2}\right )+\frac {10 (-3+e)}{x^2}\right ) \, dx+\frac {1}{4} (-3+e) \int -\frac {(1+5 x)^2}{2 x^3} \, dx+\frac {1}{4} (-3+e) \int \frac {\log (x)}{x^3} \, dx\\ &=\frac {3-e}{16 x^2}+\frac {5 (3-e)}{4 x}-\frac {1}{8} (2-e) x+\frac {(3-e) \log (x)}{8 x^2}-\frac {(3-e) (1+5 x)^2 \log (x)}{8 x^2}+\frac {(3-e) \log ^2(x)}{8 x^2}+\frac {1}{8} (3-e) \int \frac {(1+5 x)^2}{x^3} \, dx\\ &=\frac {3-e}{16 x^2}+\frac {5 (3-e)}{4 x}-\frac {1}{8} (2-e) x+\frac {(3-e) \log (x)}{8 x^2}-\frac {(3-e) (1+5 x)^2 \log (x)}{8 x^2}+\frac {(3-e) \log ^2(x)}{8 x^2}+\frac {1}{8} (3-e) \int \left (\frac {1}{x^3}+\frac {10}{x^2}+\frac {25}{x}\right ) \, dx\\ &=-\frac {1}{8} (2-e) x+\frac {25}{8} (3-e) \log (x)+\frac {(3-e) \log (x)}{8 x^2}-\frac {(3-e) (1+5 x)^2 \log (x)}{8 x^2}+\frac {(3-e) \log ^2(x)}{8 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 45, normalized size = 1.67 \begin {gather*} \frac {1}{8} \left (-2 x+e x-\frac {30 \log (x)}{x}+\frac {10 e \log (x)}{x}+\frac {3 \log ^2(x)}{x^2}-\frac {e \log ^2(x)}{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 39, normalized size = 1.44 \begin {gather*} \frac {x^{3} e - 2 \, x^{3} - {\left (e - 3\right )} \log \relax (x)^{2} + 10 \, {\left (x e - 3 \, x\right )} \log \relax (x)}{8 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 43, normalized size = 1.59 \begin {gather*} \frac {x^{3} e - 2 \, x^{3} + 10 \, x e \log \relax (x) - e \log \relax (x)^{2} - 30 \, x \log \relax (x) + 3 \, \log \relax (x)^{2}}{8 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 34, normalized size = 1.26
method | result | size |
risch | \(-\frac {\left ({\mathrm e}-3\right ) \ln \relax (x )^{2}}{8 x^{2}}+\frac {5 \left ({\mathrm e}-3\right ) \ln \relax (x )}{4 x}-\frac {x}{4}+\frac {x \,{\mathrm e}}{8}\) | \(34\) |
norman | \(\frac {\left (-\frac {1}{4}+\frac {{\mathrm e}}{8}\right ) x^{3}+\left (-\frac {{\mathrm e}}{8}+\frac {3}{8}\right ) \ln \relax (x )^{2}+\left (\frac {5 \,{\mathrm e}}{4}-\frac {15}{4}\right ) x \ln \relax (x )}{x^{2}}\) | \(37\) |
default | \(\frac {x \,{\mathrm e}}{8}+\frac {{\mathrm e} \left (-\frac {\ln \relax (x )^{2}}{2 x^{2}}-\frac {\ln \relax (x )}{2 x^{2}}-\frac {1}{4 x^{2}}\right )}{4}-\frac {5 \,{\mathrm e} \left (-\frac {\ln \relax (x )}{x}-\frac {1}{x}\right )}{4}-\frac {x}{4}+\frac {3 \ln \relax (x )^{2}}{8 x^{2}}-\frac {{\mathrm e} \left (-\frac {\ln \relax (x )}{2 x^{2}}-\frac {1}{4 x^{2}}\right )}{4}-\frac {15 \ln \relax (x )}{4 x}-\frac {5 \,{\mathrm e}}{4 x}\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.71, size = 100, normalized size = 3.70 \begin {gather*} \frac {1}{8} \, x e + \frac {5}{4} \, {\left (\frac {\log \relax (x)}{x} + \frac {1}{x}\right )} e + \frac {1}{16} \, {\left (\frac {2 \, \log \relax (x)}{x^{2}} + \frac {1}{x^{2}}\right )} e - \frac {1}{4} \, x - \frac {{\left (2 \, \log \relax (x)^{2} + 2 \, \log \relax (x) + 1\right )} e}{16 \, x^{2}} - \frac {5 \, e}{4 \, x} - \frac {15 \, \log \relax (x)}{4 \, x} + \frac {3 \, {\left (2 \, \log \relax (x)^{2} + 2 \, \log \relax (x) + 1\right )}}{16 \, x^{2}} - \frac {3 \, \log \relax (x)}{8 \, x^{2}} - \frac {3}{16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.38, size = 38, normalized size = 1.41 \begin {gather*} \frac {\frac {x^2\,\ln \relax (x)\,\left (10\,\mathrm {e}-30\right )}{8}-\frac {x\,{\ln \relax (x)}^2\,\left (\mathrm {e}-3\right )}{8}}{x^3}+x\,\left (\frac {\mathrm {e}}{8}-\frac {1}{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 37, normalized size = 1.37 \begin {gather*} x \left (- \frac {1}{4} + \frac {e}{8}\right ) + \frac {\left (-15 + 5 e\right ) \log {\relax (x )}}{4 x} + \frac {\left (3 - e\right ) \log {\relax (x )}^{2}}{8 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________