Optimal. Leaf size=20 \[ 1-x \left (-12 \log (4)+\frac {225 x^2}{\log ^2(\log (x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {450 x^2-675 x^2 \log (x) \log (\log (x))+12 \log (4) \log (x) \log ^3(\log (x))}{\log (x) \log ^3(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (150 x^2-225 x^2 \log (x) \log (\log (x))+4 \log (4) \log (x) \log ^3(\log (x))\right )}{\log (x) \log ^3(\log (x))} \, dx\\ &=3 \int \frac {150 x^2-225 x^2 \log (x) \log (\log (x))+4 \log (4) \log (x) \log ^3(\log (x))}{\log (x) \log ^3(\log (x))} \, dx\\ &=3 \int \left (\log (256)+\frac {150 x^2}{\log (x) \log ^3(\log (x))}-\frac {225 x^2}{\log ^2(\log (x))}\right ) \, dx\\ &=3 x \log (256)+450 \int \frac {x^2}{\log (x) \log ^3(\log (x))} \, dx-675 \int \frac {x^2}{\log ^2(\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 16, normalized size = 0.80 \begin {gather*} 12 x \log (4)-\frac {225 x^3}{\log ^2(\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.19, size = 23, normalized size = 1.15 \begin {gather*} \frac {3 \, {\left (8 \, x \log \relax (2) \log \left (\log \relax (x)\right )^{2} - 75 \, x^{3}\right )}}{\log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 16, normalized size = 0.80 \begin {gather*} 24 \, x \log \relax (2) - \frac {225 \, x^{3}}{\log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.85
method | result | size |
risch | \(24 x \ln \relax (2)-\frac {225 x^{3}}{\ln \left (\ln \relax (x )\right )^{2}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 16, normalized size = 0.80 \begin {gather*} 24 \, x \log \relax (2) - \frac {225 \, x^{3}}{\log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.26, size = 16, normalized size = 0.80 \begin {gather*} 24\,x\,\ln \relax (2)-\frac {225\,x^3}{{\ln \left (\ln \relax (x)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 17, normalized size = 0.85 \begin {gather*} - \frac {225 x^{3}}{\log {\left (\log {\relax (x )} \right )}^{2}} + 24 x \log {\relax (2 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________