Optimal. Leaf size=34 \[ \left (-\frac {e^x}{x}+\frac {3+x}{x}\right )^2 \left (-x^2-x^6+\log ^2(2)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.55, antiderivative size = 123, normalized size of antiderivative = 3.62, number of steps used = 47, number of rules used = 7, integrand size = 117, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {14, 1620, 2199, 2194, 2176, 2177, 2178} \begin {gather*} -x^6+2 e^x x^5-6 x^5+6 e^x x^4-e^{2 x} x^4-9 x^4-x^2-\frac {6 e^x \log ^2(2)}{x^2}+\frac {e^{2 x} \log ^2(2)}{x^2}+\frac {9 \log ^2(2)}{x^2}+2 e^x x-6 x+6 e^x-e^{2 x}-\frac {2 e^x \log ^2(2)}{x}+\frac {6 \log ^2(2)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 1620
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 (3+x) \left (x^3+6 x^6+3 x^7+3 \log ^2(2)\right )}{x^3}-\frac {2 e^{2 x} \left (x^3+2 x^6+x^7+\log ^2(2)-x \log ^2(2)\right )}{x^3}+\frac {2 e^x \left (4 x^3+x^4+12 x^6+8 x^7+x^8+6 \log ^2(2)-2 x \log ^2(2)-x^2 \log ^2(2)\right )}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {(3+x) \left (x^3+6 x^6+3 x^7+3 \log ^2(2)\right )}{x^3} \, dx\right )-2 \int \frac {e^{2 x} \left (x^3+2 x^6+x^7+\log ^2(2)-x \log ^2(2)\right )}{x^3} \, dx+2 \int \frac {e^x \left (4 x^3+x^4+12 x^6+8 x^7+x^8+6 \log ^2(2)-2 x \log ^2(2)-x^2 \log ^2(2)\right )}{x^3} \, dx\\ &=-\left (2 \int \left (3+x+18 x^3+15 x^4+3 x^5+\frac {9 \log ^2(2)}{x^3}+\frac {3 \log ^2(2)}{x^2}\right ) \, dx\right )-2 \int \left (e^{2 x}+2 e^{2 x} x^3+e^{2 x} x^4+\frac {e^{2 x} \log ^2(2)}{x^3}-\frac {e^{2 x} \log ^2(2)}{x^2}\right ) \, dx+2 \int \left (4 e^x+e^x x+12 e^x x^3+8 e^x x^4+e^x x^5+\frac {6 e^x \log ^2(2)}{x^3}-\frac {2 e^x \log ^2(2)}{x^2}-\frac {e^x \log ^2(2)}{x}\right ) \, dx\\ &=-6 x-x^2-9 x^4-6 x^5-x^6+\frac {9 \log ^2(2)}{x^2}+\frac {6 \log ^2(2)}{x}-2 \int e^{2 x} \, dx+2 \int e^x x \, dx-2 \int e^{2 x} x^4 \, dx+2 \int e^x x^5 \, dx-4 \int e^{2 x} x^3 \, dx+8 \int e^x \, dx+16 \int e^x x^4 \, dx+24 \int e^x x^3 \, dx-\left (2 \log ^2(2)\right ) \int \frac {e^{2 x}}{x^3} \, dx+\left (2 \log ^2(2)\right ) \int \frac {e^{2 x}}{x^2} \, dx-\left (2 \log ^2(2)\right ) \int \frac {e^x}{x} \, dx-\left (4 \log ^2(2)\right ) \int \frac {e^x}{x^2} \, dx+\left (12 \log ^2(2)\right ) \int \frac {e^x}{x^3} \, dx\\ &=8 e^x-e^{2 x}-6 x+2 e^x x-x^2+24 e^x x^3-2 e^{2 x} x^3-9 x^4+16 e^x x^4-e^{2 x} x^4-6 x^5+2 e^x x^5-x^6+\frac {9 \log ^2(2)}{x^2}-\frac {6 e^x \log ^2(2)}{x^2}+\frac {e^{2 x} \log ^2(2)}{x^2}+\frac {6 \log ^2(2)}{x}+\frac {4 e^x \log ^2(2)}{x}-\frac {2 e^{2 x} \log ^2(2)}{x}-2 \text {Ei}(x) \log ^2(2)-2 \int e^x \, dx+4 \int e^{2 x} x^3 \, dx+6 \int e^{2 x} x^2 \, dx-10 \int e^x x^4 \, dx-64 \int e^x x^3 \, dx-72 \int e^x x^2 \, dx-\left (2 \log ^2(2)\right ) \int \frac {e^{2 x}}{x^2} \, dx-\left (4 \log ^2(2)\right ) \int \frac {e^x}{x} \, dx+\left (4 \log ^2(2)\right ) \int \frac {e^{2 x}}{x} \, dx+\left (6 \log ^2(2)\right ) \int \frac {e^x}{x^2} \, dx\\ &=6 e^x-e^{2 x}-6 x+2 e^x x-x^2-72 e^x x^2+3 e^{2 x} x^2-40 e^x x^3-9 x^4+6 e^x x^4-e^{2 x} x^4-6 x^5+2 e^x x^5-x^6+\frac {9 \log ^2(2)}{x^2}-\frac {6 e^x \log ^2(2)}{x^2}+\frac {e^{2 x} \log ^2(2)}{x^2}+\frac {6 \log ^2(2)}{x}-\frac {2 e^x \log ^2(2)}{x}-6 \text {Ei}(x) \log ^2(2)+4 \text {Ei}(2 x) \log ^2(2)-6 \int e^{2 x} x \, dx-6 \int e^{2 x} x^2 \, dx+40 \int e^x x^3 \, dx+144 \int e^x x \, dx+192 \int e^x x^2 \, dx-\left (4 \log ^2(2)\right ) \int \frac {e^{2 x}}{x} \, dx+\left (6 \log ^2(2)\right ) \int \frac {e^x}{x} \, dx\\ &=6 e^x-e^{2 x}-6 x+146 e^x x-3 e^{2 x} x-x^2+120 e^x x^2-9 x^4+6 e^x x^4-e^{2 x} x^4-6 x^5+2 e^x x^5-x^6+\frac {9 \log ^2(2)}{x^2}-\frac {6 e^x \log ^2(2)}{x^2}+\frac {e^{2 x} \log ^2(2)}{x^2}+\frac {6 \log ^2(2)}{x}-\frac {2 e^x \log ^2(2)}{x}+3 \int e^{2 x} \, dx+6 \int e^{2 x} x \, dx-120 \int e^x x^2 \, dx-144 \int e^x \, dx-384 \int e^x x \, dx\\ &=-138 e^x+\frac {e^{2 x}}{2}-6 x-238 e^x x-x^2-9 x^4+6 e^x x^4-e^{2 x} x^4-6 x^5+2 e^x x^5-x^6+\frac {9 \log ^2(2)}{x^2}-\frac {6 e^x \log ^2(2)}{x^2}+\frac {e^{2 x} \log ^2(2)}{x^2}+\frac {6 \log ^2(2)}{x}-\frac {2 e^x \log ^2(2)}{x}-3 \int e^{2 x} \, dx+240 \int e^x x \, dx+384 \int e^x \, dx\\ &=246 e^x-e^{2 x}-6 x+2 e^x x-x^2-9 x^4+6 e^x x^4-e^{2 x} x^4-6 x^5+2 e^x x^5-x^6+\frac {9 \log ^2(2)}{x^2}-\frac {6 e^x \log ^2(2)}{x^2}+\frac {e^{2 x} \log ^2(2)}{x^2}+\frac {6 \log ^2(2)}{x}-\frac {2 e^x \log ^2(2)}{x}-240 \int e^x \, dx\\ &=6 e^x-e^{2 x}-6 x+2 e^x x-x^2-9 x^4+6 e^x x^4-e^{2 x} x^4-6 x^5+2 e^x x^5-x^6+\frac {9 \log ^2(2)}{x^2}-\frac {6 e^x \log ^2(2)}{x^2}+\frac {e^{2 x} \log ^2(2)}{x^2}+\frac {6 \log ^2(2)}{x}-\frac {2 e^x \log ^2(2)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.63, size = 80, normalized size = 2.35 \begin {gather*} -\frac {6 x^3+x^4+9 x^6+6 x^7+x^8-9 \log ^2(2)-6 x \log ^2(2)+e^{2 x} \left (x^2+x^6-\log ^2(2)\right )-2 e^x (3+x) \left (x^2+x^6-\log ^2(2)\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 86, normalized size = 2.53 \begin {gather*} -\frac {x^{8} + 6 \, x^{7} + 9 \, x^{6} + x^{4} + 6 \, x^{3} - 3 \, {\left (2 \, x + 3\right )} \log \relax (2)^{2} + {\left (x^{6} + x^{2} - \log \relax (2)^{2}\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x^{7} + 3 \, x^{6} + x^{3} - {\left (x + 3\right )} \log \relax (2)^{2} + 3 \, x^{2}\right )} e^{x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 111, normalized size = 3.26 \begin {gather*} -\frac {x^{8} - 2 \, x^{7} e^{x} + 6 \, x^{7} + x^{6} e^{\left (2 \, x\right )} - 6 \, x^{6} e^{x} + 9 \, x^{6} + x^{4} - 2 \, x^{3} e^{x} + 2 \, x e^{x} \log \relax (2)^{2} + 6 \, x^{3} + x^{2} e^{\left (2 \, x\right )} - 6 \, x^{2} e^{x} - 6 \, x \log \relax (2)^{2} - e^{\left (2 \, x\right )} \log \relax (2)^{2} + 6 \, e^{x} \log \relax (2)^{2} - 9 \, \log \relax (2)^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.16, size = 106, normalized size = 3.12
method | result | size |
risch | \(-x^{6}-6 x^{5}-9 x^{4}-x^{2}-6 x +\frac {6 x \ln \relax (2)^{2}+9 \ln \relax (2)^{2}}{x^{2}}+\frac {\left (\ln \relax (2)^{2}-x^{2}-x^{6}\right ) {\mathrm e}^{2 x}}{x^{2}}-\frac {2 \left (-x^{7}-3 x^{6}+x \ln \relax (2)^{2}-x^{3}+3 \ln \relax (2)^{2}-3 x^{2}\right ) {\mathrm e}^{x}}{x^{2}}\) | \(106\) |
default | \(-x^{6}-6 x^{5}-9 x^{4}-x^{2}-6 x -{\mathrm e}^{2 x}+\frac {9 \ln \relax (2)^{2}}{x^{2}}+2 x^{5} {\mathrm e}^{x}+6 \,{\mathrm e}^{x} x^{4}+2 \,{\mathrm e}^{x} x +6 \,{\mathrm e}^{x}-{\mathrm e}^{2 x} x^{4}+\frac {6 \ln \relax (2)^{2}}{x}-\frac {6 \ln \relax (2)^{2} {\mathrm e}^{x}}{x^{2}}-\frac {2 \ln \relax (2)^{2} {\mathrm e}^{x}}{x}+\frac {\ln \relax (2)^{2} {\mathrm e}^{2 x}}{x^{2}}\) | \(115\) |
norman | \(\frac {\ln \relax (2)^{2} {\mathrm e}^{2 x}-6 x^{3}-x^{4}-9 x^{6}-6 x^{7}-x^{8}+9 \ln \relax (2)^{2}+6 x \ln \relax (2)^{2}+6 x^{6} {\mathrm e}^{x}-{\mathrm e}^{2 x} x^{6}+2 x^{7} {\mathrm e}^{x}+6 \,{\mathrm e}^{x} x^{2}+2 \,{\mathrm e}^{x} x^{3}-{\mathrm e}^{2 x} x^{2}-6 \ln \relax (2)^{2} {\mathrm e}^{x}-2 x \ln \relax (2)^{2} {\mathrm e}^{x}}{x^{2}}\) | \(116\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 224, normalized size = 6.59 \begin {gather*} -x^{6} - 6 \, x^{5} - 9 \, x^{4} - 2 \, {\rm Ei}\relax (x) \log \relax (2)^{2} - 4 \, \Gamma \left (-1, -x\right ) \log \relax (2)^{2} + 4 \, \Gamma \left (-1, -2 \, x\right ) \log \relax (2)^{2} - 12 \, \Gamma \left (-2, -x\right ) \log \relax (2)^{2} + 8 \, \Gamma \left (-2, -2 \, x\right ) \log \relax (2)^{2} - x^{2} - \frac {1}{2} \, {\left (2 \, x^{4} - 4 \, x^{3} + 6 \, x^{2} - 6 \, x + 3\right )} e^{\left (2 \, x\right )} - \frac {1}{2} \, {\left (4 \, x^{3} - 6 \, x^{2} + 6 \, x - 3\right )} e^{\left (2 \, x\right )} + 2 \, {\left (x^{5} - 5 \, x^{4} + 20 \, x^{3} - 60 \, x^{2} + 120 \, x - 120\right )} e^{x} + 16 \, {\left (x^{4} - 4 \, x^{3} + 12 \, x^{2} - 24 \, x + 24\right )} e^{x} + 24 \, {\left (x^{3} - 3 \, x^{2} + 6 \, x - 6\right )} e^{x} + 2 \, {\left (x - 1\right )} e^{x} - 6 \, x + \frac {6 \, \log \relax (2)^{2}}{x} + \frac {9 \, \log \relax (2)^{2}}{x^{2}} - e^{\left (2 \, x\right )} + 8 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 101, normalized size = 2.97 \begin {gather*} 6\,{\mathrm {e}}^x-{\mathrm {e}}^{2\,x}-x^4\,\left ({\mathrm {e}}^{2\,x}-6\,{\mathrm {e}}^x+9\right )+x\,\left (2\,{\mathrm {e}}^x-6\right )-\frac {6\,{\mathrm {e}}^x\,{\ln \relax (2)}^2-{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2+x\,\left (2\,{\mathrm {e}}^x\,{\ln \relax (2)}^2-6\,{\ln \relax (2)}^2\right )-9\,{\ln \relax (2)}^2}{x^2}+x^5\,\left (2\,{\mathrm {e}}^x-6\right )-x^2-x^6 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.31, size = 107, normalized size = 3.15 \begin {gather*} - x^{6} - 6 x^{5} - 9 x^{4} - x^{2} - 6 x - \frac {- 6 x \log {\relax (2 )}^{2} - 9 \log {\relax (2 )}^{2}}{x^{2}} + \frac {\left (- x^{8} - x^{4} + x^{2} \log {\relax (2 )}^{2}\right ) e^{2 x} + \left (2 x^{9} + 6 x^{8} + 2 x^{5} + 6 x^{4} - 2 x^{3} \log {\relax (2 )}^{2} - 6 x^{2} \log {\relax (2 )}^{2}\right ) e^{x}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________