Optimal. Leaf size=33 \[ \frac {2 \log \left (1+5 \left (-2+e^x\right )\right )}{x \left (-x+\left (x+\log \left (e^3-x\right )\right )^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 24.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (10 x^3-10 x^4+e^3 \left (-10 x^2+10 x^3\right )\right )+e^x \left (20 e^3 x^2-20 x^3\right ) \log \left (e^3-x\right )+e^x \left (10 e^3 x-10 x^2\right ) \log ^2\left (e^3-x\right )+\log \left (-9+5 e^x\right ) \left (-54 x^3+e^3 \left (-36 x+54 x^2\right )+e^x \left (30 x^3+e^3 \left (20 x-30 x^2\right )\right )+\left (-36 x+72 e^3 x-72 x^2+e^x \left (20 x-40 e^3 x+40 x^2\right )\right ) \log \left (e^3-x\right )+\left (18 e^3-18 x+e^x \left (-10 e^3+10 x\right )\right ) \log ^2\left (e^3-x\right )\right )}{9 x^5-18 x^6+9 x^7+e^3 \left (-9 x^4+18 x^5-9 x^6\right )+e^x \left (-5 x^5+10 x^6-5 x^7+e^3 \left (5 x^4-10 x^5+5 x^6\right )\right )+\left (-36 x^5+36 x^6+e^3 \left (36 x^4-36 x^5\right )+e^x \left (20 x^5-20 x^6+e^3 \left (-20 x^4+20 x^5\right )\right )\right ) \log \left (e^3-x\right )+\left (-18 x^4+54 x^5+e^3 \left (18 x^3-54 x^4\right )+e^x \left (10 x^4-30 x^5+e^3 \left (-10 x^3+30 x^4\right )\right )\right ) \log ^2\left (e^3-x\right )+\left (-36 e^3 x^3+36 x^4+e^x \left (20 e^3 x^3-20 x^4\right )\right ) \log ^3\left (e^3-x\right )+\left (-9 e^3 x^2+9 x^3+e^x \left (5 e^3 x^2-5 x^3\right )\right ) \log ^4\left (e^3-x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (\frac {5 e^x x \left ((-1+x) x+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )}{-9+5 e^x}-\frac {\log \left (-9+5 e^x\right ) \left (-3 x^3+e^3 x (-2+3 x)-2 x \left (1-2 e^3+2 x\right ) \log \left (e^3-x\right )+\left (e^3-x\right ) \log ^2\left (e^3-x\right )\right )}{e^3-x}\right )}{x^2 \left ((-1+x) x+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2} \, dx\\ &=2 \int \frac {\frac {5 e^x x \left ((-1+x) x+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )}{-9+5 e^x}-\frac {\log \left (-9+5 e^x\right ) \left (-3 x^3+e^3 x (-2+3 x)-2 x \left (1-2 e^3+2 x\right ) \log \left (e^3-x\right )+\left (e^3-x\right ) \log ^2\left (e^3-x\right )\right )}{e^3-x}}{x^2 \left ((-1+x) x+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2} \, dx\\ &=2 \int \left (\frac {9}{\left (-9+5 e^x\right ) x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )}+\frac {-e^3 x^2+\left (1+e^3\right ) x^3-x^4+2 e^3 x \log \left (-9+5 e^x\right )-3 e^3 x^2 \log \left (-9+5 e^x\right )+3 x^3 \log \left (-9+5 e^x\right )+2 e^3 x^2 \log \left (e^3-x\right )-2 x^3 \log \left (e^3-x\right )+2 \left (1-2 e^3\right ) x \log \left (-9+5 e^x\right ) \log \left (e^3-x\right )+4 x^2 \log \left (-9+5 e^x\right ) \log \left (e^3-x\right )+e^3 x \log ^2\left (e^3-x\right )-x^2 \log ^2\left (e^3-x\right )-e^3 \log \left (-9+5 e^x\right ) \log ^2\left (e^3-x\right )+x \log \left (-9+5 e^x\right ) \log ^2\left (e^3-x\right )}{\left (e^3-x\right ) x^2 \left (x-x^2-2 x \log \left (e^3-x\right )-\log ^2\left (e^3-x\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {-e^3 x^2+\left (1+e^3\right ) x^3-x^4+2 e^3 x \log \left (-9+5 e^x\right )-3 e^3 x^2 \log \left (-9+5 e^x\right )+3 x^3 \log \left (-9+5 e^x\right )+2 e^3 x^2 \log \left (e^3-x\right )-2 x^3 \log \left (e^3-x\right )+2 \left (1-2 e^3\right ) x \log \left (-9+5 e^x\right ) \log \left (e^3-x\right )+4 x^2 \log \left (-9+5 e^x\right ) \log \left (e^3-x\right )+e^3 x \log ^2\left (e^3-x\right )-x^2 \log ^2\left (e^3-x\right )-e^3 \log \left (-9+5 e^x\right ) \log ^2\left (e^3-x\right )+x \log \left (-9+5 e^x\right ) \log ^2\left (e^3-x\right )}{\left (e^3-x\right ) x^2 \left (x-x^2-2 x \log \left (e^3-x\right )-\log ^2\left (e^3-x\right )\right )^2} \, dx+18 \int \frac {1}{\left (-9+5 e^x\right ) x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx\\ &=2 \int \frac {x \left ((-1+x) x+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )+\frac {\log \left (-9+5 e^x\right ) \left (e^3 (2-3 x) x+3 x^3+2 x \left (1-2 e^3+2 x\right ) \log \left (e^3-x\right )+\left (-e^3+x\right ) \log ^2\left (e^3-x\right )\right )}{e^3-x}}{x^2 \left ((-1+x) x+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2} \, dx+18 \int \frac {1}{\left (-9+5 e^x\right ) x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx\\ &=2 \int \left (\frac {\log \left (-9+5 e^x\right ) \left (e^3+\left (1-2 e^3\right ) x+2 x^2+2 \left (1-e^3\right ) \log \left (e^3-x\right )+2 x \log \left (e^3-x\right )\right )}{\left (e^3-x\right ) x \left (x-x^2-2 x \log \left (e^3-x\right )-\log ^2\left (e^3-x\right )\right )^2}+\frac {x-\log \left (-9+5 e^x\right )}{x^2 \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )}\right ) \, dx+18 \int \frac {1}{\left (-9+5 e^x\right ) x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx\\ &=2 \int \frac {\log \left (-9+5 e^x\right ) \left (e^3+\left (1-2 e^3\right ) x+2 x^2+2 \left (1-e^3\right ) \log \left (e^3-x\right )+2 x \log \left (e^3-x\right )\right )}{\left (e^3-x\right ) x \left (x-x^2-2 x \log \left (e^3-x\right )-\log ^2\left (e^3-x\right )\right )^2} \, dx+2 \int \frac {x-\log \left (-9+5 e^x\right )}{x^2 \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx+18 \int \frac {1}{\left (-9+5 e^x\right ) x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx\\ &=2 \int \left (\frac {\log \left (-9+5 e^x\right ) \left (e^3+\left (1-2 e^3\right ) x+2 x^2+2 \left (1-e^3\right ) \log \left (e^3-x\right )+2 x \log \left (e^3-x\right )\right )}{e^3 \left (e^3-x\right ) \left (x-x^2-2 x \log \left (e^3-x\right )-\log ^2\left (e^3-x\right )\right )^2}+\frac {\log \left (-9+5 e^x\right ) \left (e^3+\left (1-2 e^3\right ) x+2 x^2+2 \left (1-e^3\right ) \log \left (e^3-x\right )+2 x \log \left (e^3-x\right )\right )}{e^3 x \left (x-x^2-2 x \log \left (e^3-x\right )-\log ^2\left (e^3-x\right )\right )^2}\right ) \, dx+2 \int \left (\frac {1}{x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )}-\frac {\log \left (-9+5 e^x\right )}{x^2 \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )}\right ) \, dx+18 \int \frac {1}{\left (-9+5 e^x\right ) x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx\\ &=2 \int \frac {1}{x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx-2 \int \frac {\log \left (-9+5 e^x\right )}{x^2 \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx+18 \int \frac {1}{\left (-9+5 e^x\right ) x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx+\frac {2 \int \frac {\log \left (-9+5 e^x\right ) \left (e^3+\left (1-2 e^3\right ) x+2 x^2+2 \left (1-e^3\right ) \log \left (e^3-x\right )+2 x \log \left (e^3-x\right )\right )}{\left (e^3-x\right ) \left (x-x^2-2 x \log \left (e^3-x\right )-\log ^2\left (e^3-x\right )\right )^2} \, dx}{e^3}+\frac {2 \int \frac {\log \left (-9+5 e^x\right ) \left (e^3+\left (1-2 e^3\right ) x+2 x^2+2 \left (1-e^3\right ) \log \left (e^3-x\right )+2 x \log \left (e^3-x\right )\right )}{x \left (x-x^2-2 x \log \left (e^3-x\right )-\log ^2\left (e^3-x\right )\right )^2} \, dx}{e^3}\\ &=2 \int \frac {1}{x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx-2 \int \frac {\log \left (-9+5 e^x\right )}{x^2 \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx+18 \int \frac {1}{\left (-9+5 e^x\right ) x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \, dx+\frac {2 \int \left (-\frac {\left (-1+2 e^3\right ) \log \left (-9+5 e^x\right )}{\left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}+\frac {e^3 \log \left (-9+5 e^x\right )}{x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}+\frac {2 x \log \left (-9+5 e^x\right )}{\left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}+\frac {2 \log \left (-9+5 e^x\right ) \log \left (e^3-x\right )}{\left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}-\frac {2 \left (-1+e^3\right ) \log \left (-9+5 e^x\right ) \log \left (e^3-x\right )}{x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}\right ) \, dx}{e^3}+\frac {2 \int \left (\frac {e^3 \log \left (-9+5 e^x\right )}{\left (e^3-x\right ) \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}-\frac {\left (-1+2 e^3\right ) x \log \left (-9+5 e^x\right )}{\left (e^3-x\right ) \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}+\frac {2 x^2 \log \left (-9+5 e^x\right )}{\left (e^3-x\right ) \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}-\frac {2 \left (-1+e^3\right ) \log \left (-9+5 e^x\right ) \log \left (e^3-x\right )}{\left (e^3-x\right ) \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}+\frac {2 x \log \left (-9+5 e^x\right ) \log \left (e^3-x\right )}{\left (e^3-x\right ) \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )^2}\right ) \, dx}{e^3}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 43, normalized size = 1.30 \begin {gather*} \frac {2 \log \left (-9+5 e^x\right )}{x \left (-x+x^2+2 x \log \left (e^3-x\right )+\log ^2\left (e^3-x\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 43, normalized size = 1.30 \begin {gather*} \frac {2 \, \log \left (5 \, e^{x} - 9\right )}{x^{3} + 2 \, x^{2} \log \left (-x + e^{3}\right ) + x \log \left (-x + e^{3}\right )^{2} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 41, normalized size = 1.24
method | result | size |
risch | \(\frac {2 \ln \left (5 \,{\mathrm e}^{x}-9\right )}{x \left (x^{2}+2 x \ln \left (-x +{\mathrm e}^{3}\right )+\ln \left (-x +{\mathrm e}^{3}\right )^{2}-x \right )}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 43, normalized size = 1.30 \begin {gather*} \frac {2 \, \log \left (5 \, e^{x} - 9\right )}{x^{3} + 2 \, x^{2} \log \left (-x + e^{3}\right ) + x \log \left (-x + e^{3}\right )^{2} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.15, size = 40, normalized size = 1.21 \begin {gather*} \frac {2\,\ln \left (5\,{\mathrm {e}}^x-9\right )}{x\,\left (x^2+2\,x\,\ln \left ({\mathrm {e}}^3-x\right )-x+{\ln \left ({\mathrm {e}}^3-x\right )}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.23, size = 37, normalized size = 1.12 \begin {gather*} \frac {2 \log {\left (5 e^{x} - 9 \right )}}{x^{3} + 2 x^{2} \log {\left (- x + e^{3} \right )} - x^{2} + x \log {\left (- x + e^{3} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________