Optimal. Leaf size=28 \[ e^5+e^{\left (-1+\left (-2+e^x (5-x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 134.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (1+\left (4+e^x (-10+2 x)\right ) \log \left (\frac {3 x}{2}\right )+\left (4+e^x (-20+4 x)+e^{2 x} \left (25-10 x+x^2\right )\right ) \log ^2\left (\frac {3 x}{2}\right )\right ) \left (4+e^x (-10+2 x)+\left (8+e^x \left (-40+2 x^2\right )+e^{2 x} \left (50-20 x+2 x^2\right )\right ) \log \left (\frac {3 x}{2}\right )+\left (e^x \left (-16 x+4 x^2\right )+e^{2 x} \left (40 x-18 x^2+2 x^3\right )\right ) \log ^2\left (\frac {3 x}{2}\right )\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\left (1+2 \log \left (\frac {3 x}{2}\right )-5 e^x \log \left (\frac {3 x}{2}\right )+e^x x \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (4+e^x (-10+2 x)+\left (8+e^x \left (-40+2 x^2\right )+e^{2 x} \left (50-20 x+2 x^2\right )\right ) \log \left (\frac {3 x}{2}\right )+\left (e^x \left (-16 x+4 x^2\right )+e^{2 x} \left (40 x-18 x^2+2 x^3\right )\right ) \log ^2\left (\frac {3 x}{2}\right )\right )}{x} \, dx\\ &=\int \frac {2 \exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (2+e^x (-5+x)+\left (4+e^{2 x} (-5+x)^2+e^x \left (-20+x^2\right )\right ) \log \left (\frac {3 x}{2}\right )+e^x \left (2+e^x (-5+x)\right ) (-4+x) x \log ^2\left (\frac {3 x}{2}\right )\right )}{x} \, dx\\ &=2 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (2+e^x (-5+x)+\left (4+e^{2 x} (-5+x)^2+e^x \left (-20+x^2\right )\right ) \log \left (\frac {3 x}{2}\right )+e^x \left (2+e^x (-5+x)\right ) (-4+x) x \log ^2\left (\frac {3 x}{2}\right )\right )}{x} \, dx\\ &=2 \int \left (\frac {2 \exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (1+2 \log \left (\frac {3 x}{2}\right )\right )}{x}+\frac {\exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) (-5+x) \log \left (\frac {3 x}{2}\right ) \left (-5+x-4 x \log \left (\frac {3 x}{2}\right )+x^2 \log \left (\frac {3 x}{2}\right )\right )}{x}+\frac {\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (-5+x-20 \log \left (\frac {3 x}{2}\right )+x^2 \log \left (\frac {3 x}{2}\right )-8 x \log ^2\left (\frac {3 x}{2}\right )+2 x^2 \log ^2\left (\frac {3 x}{2}\right )\right )}{x}\right ) \, dx\\ &=2 \int \frac {\exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) (-5+x) \log \left (\frac {3 x}{2}\right ) \left (-5+x-4 x \log \left (\frac {3 x}{2}\right )+x^2 \log \left (\frac {3 x}{2}\right )\right )}{x} \, dx+2 \int \frac {\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (-5+x-20 \log \left (\frac {3 x}{2}\right )+x^2 \log \left (\frac {3 x}{2}\right )-8 x \log ^2\left (\frac {3 x}{2}\right )+2 x^2 \log ^2\left (\frac {3 x}{2}\right )\right )}{x} \, dx+4 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (1+2 \log \left (\frac {3 x}{2}\right )\right )}{x} \, dx\\ &=2 \int \frac {\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (-5+x+\left (-20+x^2\right ) \log \left (\frac {3 x}{2}\right )+2 (-4+x) x \log ^2\left (\frac {3 x}{2}\right )\right )}{x} \, dx+2 \int \left (\frac {\exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) (-5+x)^2 \log \left (\frac {3 x}{2}\right )}{x}+\exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (20-9 x+x^2\right ) \log ^2\left (\frac {3 x}{2}\right )\right ) \, dx+4 \int \left (\frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right )}{x}+\frac {2 \exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x}\right ) \, dx\\ &=2 \int \frac {\exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) (-5+x)^2 \log \left (\frac {3 x}{2}\right )}{x} \, dx+2 \int \exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (20-9 x+x^2\right ) \log ^2\left (\frac {3 x}{2}\right ) \, dx+2 \int \left (\frac {\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) (-5+x)}{x}+\frac {\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (-20+x^2\right ) \log \left (\frac {3 x}{2}\right )}{x}+2 \exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) (-4+x) \log ^2\left (\frac {3 x}{2}\right )\right ) \, dx+4 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right )}{x} \, dx+8 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x} \, dx\\ &=2 \int \frac {\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) (-5+x)}{x} \, dx+2 \int \frac {\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \left (-20+x^2\right ) \log \left (\frac {3 x}{2}\right )}{x} \, dx+2 \int \left (-10 \exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )+\frac {25 \exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x}+\exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) x \log \left (\frac {3 x}{2}\right )\right ) \, dx+4 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right )}{x} \, dx+4 \int \exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) (-4+x) \log ^2\left (\frac {3 x}{2}\right ) \, dx+4 \operatorname {Subst}\left (\int \exp \left (4 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) \left (20-18 x+4 x^2\right ) \log ^2(3 x) \, dx,x,\frac {x}{2}\right )+8 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x} \, dx\\ &=2 \int \left (\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right )-\frac {5 \exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right )}{x}\right ) \, dx+2 \int \exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) x \log \left (\frac {3 x}{2}\right ) \, dx+2 \int \left (-\frac {20 \exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x}+\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) x \log \left (\frac {3 x}{2}\right )\right ) \, dx+4 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right )}{x} \, dx+4 \operatorname {Subst}\left (\int \left (20 \exp \left (4 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) \log ^2(3 x)-18 \exp \left (4 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) x \log ^2(3 x)+4 \exp \left (4 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) x^2 \log ^2(3 x)\right ) \, dx,x,\frac {x}{2}\right )+8 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x} \, dx+8 \operatorname {Subst}\left (\int \exp \left (2 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) (-4+2 x) \log ^2(3 x) \, dx,x,\frac {x}{2}\right )-20 \int \exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right ) \, dx+50 \int \frac {\exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x} \, dx\\ &=2 \int \exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \, dx+2 \int \exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) x \log \left (\frac {3 x}{2}\right ) \, dx+2 \int \exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) x \log \left (\frac {3 x}{2}\right ) \, dx+4 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right )}{x} \, dx+8 \int \frac {\exp \left (\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x} \, dx+8 \operatorname {Subst}\left (\int \left (-4 \exp \left (2 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) \log ^2(3 x)+2 \exp \left (2 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) x \log ^2(3 x)\right ) \, dx,x,\frac {x}{2}\right )-10 \int \frac {\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right )}{x} \, dx+16 \operatorname {Subst}\left (\int \exp \left (4 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) x^2 \log ^2(3 x) \, dx,x,\frac {x}{2}\right )-40 \int \frac {\exp \left (x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x} \, dx-40 \operatorname {Subst}\left (\int \exp \left (4 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) \log (3 x) \, dx,x,\frac {x}{2}\right )+50 \int \frac {\exp \left (2 x+\left (1+\left (2+e^x (-5+x)\right ) \log \left (\frac {3 x}{2}\right )\right )^2\right ) \log \left (\frac {3 x}{2}\right )}{x} \, dx-72 \operatorname {Subst}\left (\int \exp \left (4 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) x \log ^2(3 x) \, dx,x,\frac {x}{2}\right )+80 \operatorname {Subst}\left (\int \exp \left (4 x+\left (1+\left (2+e^{2 x} (-5+2 x)\right ) \log (3 x)\right )^2\right ) \log ^2(3 x) \, dx,x,\frac {x}{2}\right )\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 99.89, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{1+\left (4+e^x (-10+2 x)\right ) \log \left (\frac {3 x}{2}\right )+\left (4+e^x (-20+4 x)+e^{2 x} \left (25-10 x+x^2\right )\right ) \log ^2\left (\frac {3 x}{2}\right )} \left (4+e^x (-10+2 x)+\left (8+e^x \left (-40+2 x^2\right )+e^{2 x} \left (50-20 x+2 x^2\right )\right ) \log \left (\frac {3 x}{2}\right )+\left (e^x \left (-16 x+4 x^2\right )+e^{2 x} \left (40 x-18 x^2+2 x^3\right )\right ) \log ^2\left (\frac {3 x}{2}\right )\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 46, normalized size = 1.64 \begin {gather*} e^{\left ({\left ({\left (x^{2} - 10 \, x + 25\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x - 5\right )} e^{x} + 4\right )} \log \left (\frac {3}{2} \, x\right )^{2} + 2 \, {\left ({\left (x - 5\right )} e^{x} + 2\right )} \log \left (\frac {3}{2} \, x\right ) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 24.47, size = 94, normalized size = 3.36 \begin {gather*} e^{\left (x^{2} e^{\left (2 \, x\right )} \log \left (\frac {3}{2} \, x\right )^{2} - 10 \, x e^{\left (2 \, x\right )} \log \left (\frac {3}{2} \, x\right )^{2} + 4 \, x e^{x} \log \left (\frac {3}{2} \, x\right )^{2} + 2 \, x e^{x} \log \left (\frac {3}{2} \, x\right ) + 25 \, e^{\left (2 \, x\right )} \log \left (\frac {3}{2} \, x\right )^{2} - 20 \, e^{x} \log \left (\frac {3}{2} \, x\right )^{2} - 10 \, e^{x} \log \left (\frac {3}{2} \, x\right ) + 4 \, \log \left (\frac {3}{2} \, x\right )^{2} + 4 \, \log \left (\frac {3}{2} \, x\right ) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (\left (2 x^{3}-18 x^{2}+40 x \right ) {\mathrm e}^{2 x}+\left (4 x^{2}-16 x \right ) {\mathrm e}^{x}\right ) \ln \left (\frac {3 x}{2}\right )^{2}+\left (\left (2 x^{2}-20 x +50\right ) {\mathrm e}^{2 x}+\left (2 x^{2}-40\right ) {\mathrm e}^{x}+8\right ) \ln \left (\frac {3 x}{2}\right )+\left (2 x -10\right ) {\mathrm e}^{x}+4\right ) {\mathrm e}^{\left (\left (x^{2}-10 x +25\right ) {\mathrm e}^{2 x}+\left (4 x -20\right ) {\mathrm e}^{x}+4\right ) \ln \left (\frac {3 x}{2}\right )^{2}+\left (\left (2 x -10\right ) {\mathrm e}^{x}+4\right ) \ln \left (\frac {3 x}{2}\right )+1}}{x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 2.72, size = 388, normalized size = 13.86 \begin {gather*} 81 \cdot 2^{-8 \, \log \relax (3) - 4} x^{4} e^{\left (x^{2} e^{\left (2 \, x\right )} \log \relax (3)^{2} - 2 \, x^{2} e^{\left (2 \, x\right )} \log \relax (3) \log \relax (2) + x^{2} e^{\left (2 \, x\right )} \log \relax (2)^{2} + 2 \, x^{2} e^{\left (2 \, x\right )} \log \relax (3) \log \relax (x) - 2 \, x^{2} e^{\left (2 \, x\right )} \log \relax (2) \log \relax (x) + x^{2} e^{\left (2 \, x\right )} \log \relax (x)^{2} - 10 \, x e^{\left (2 \, x\right )} \log \relax (3)^{2} + 4 \, x e^{x} \log \relax (3)^{2} + 20 \, x e^{\left (2 \, x\right )} \log \relax (3) \log \relax (2) - 8 \, x e^{x} \log \relax (3) \log \relax (2) - 10 \, x e^{\left (2 \, x\right )} \log \relax (2)^{2} + 4 \, x e^{x} \log \relax (2)^{2} - 20 \, x e^{\left (2 \, x\right )} \log \relax (3) \log \relax (x) + 8 \, x e^{x} \log \relax (3) \log \relax (x) + 20 \, x e^{\left (2 \, x\right )} \log \relax (2) \log \relax (x) - 8 \, x e^{x} \log \relax (2) \log \relax (x) - 10 \, x e^{\left (2 \, x\right )} \log \relax (x)^{2} + 4 \, x e^{x} \log \relax (x)^{2} + 2 \, x e^{x} \log \relax (3) + 25 \, e^{\left (2 \, x\right )} \log \relax (3)^{2} - 20 \, e^{x} \log \relax (3)^{2} - 2 \, x e^{x} \log \relax (2) - 50 \, e^{\left (2 \, x\right )} \log \relax (3) \log \relax (2) + 40 \, e^{x} \log \relax (3) \log \relax (2) + 25 \, e^{\left (2 \, x\right )} \log \relax (2)^{2} - 20 \, e^{x} \log \relax (2)^{2} + 2 \, x e^{x} \log \relax (x) + 50 \, e^{\left (2 \, x\right )} \log \relax (3) \log \relax (x) - 40 \, e^{x} \log \relax (3) \log \relax (x) - 50 \, e^{\left (2 \, x\right )} \log \relax (2) \log \relax (x) + 40 \, e^{x} \log \relax (2) \log \relax (x) + 25 \, e^{\left (2 \, x\right )} \log \relax (x)^{2} - 20 \, e^{x} \log \relax (x)^{2} - 10 \, e^{x} \log \relax (3) + 4 \, \log \relax (3)^{2} + 10 \, e^{x} \log \relax (2) + 4 \, \log \relax (2)^{2} - 10 \, e^{x} \log \relax (x) + 8 \, \log \relax (3) \log \relax (x) - 8 \, \log \relax (2) \log \relax (x) + 4 \, \log \relax (x)^{2} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.40, size = 429, normalized size = 15.32 \begin {gather*} \frac {81\,2^{40\,{\mathrm {e}}^x\,\ln \relax (3)}\,2^{10\,{\mathrm {e}}^x}\,2^{20\,x\,{\mathrm {e}}^{2\,x}\,\ln \relax (3)}\,3^{2\,x\,{\mathrm {e}}^x}\,x^{20\,x\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)}\,x^{40\,{\mathrm {e}}^x\,\ln \relax (2)}\,x^{2\,x\,{\mathrm {e}}^x}\,x^{8\,\ln \relax (3)}\,x^{2\,x^2\,{\mathrm {e}}^{2\,x}\,\ln \relax (3)}\,x^4\,x^{50\,{\mathrm {e}}^{2\,x}\,\ln \relax (3)}\,x^{8\,x\,{\mathrm {e}}^x\,\ln \relax (3)}\,{\mathrm {e}}^{4\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{2\,x}\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{-10\,x\,{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{-10\,x\,{\mathrm {e}}^{2\,x}\,{\ln \relax (3)}^2}\,{\mathrm {e}}^{25\,{\mathrm {e}}^{2\,x}\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^x\,{\ln \relax (x)}^2}\,\mathrm {e}\,{\mathrm {e}}^{-20\,{\mathrm {e}}^x\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{-20\,{\mathrm {e}}^x\,{\ln \relax (3)}^2}\,{\mathrm {e}}^{4\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{4\,{\ln \relax (3)}^2}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{2\,x}\,{\ln \relax (3)}^2}\,{\mathrm {e}}^{-10\,x\,{\mathrm {e}}^{2\,x}\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{25\,{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{25\,{\mathrm {e}}^{2\,x}\,{\ln \relax (3)}^2}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^x\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^x\,{\ln \relax (3)}^2}\,{\mathrm {e}}^{-20\,{\mathrm {e}}^x\,{\ln \relax (x)}^2}}{16\,2^{2\,x\,{\mathrm {e}}^x}\,2^{8\,\ln \relax (3)}\,2^{2\,x^2\,{\mathrm {e}}^{2\,x}\,\ln \relax (3)}\,2^{50\,{\mathrm {e}}^{2\,x}\,\ln \relax (3)}\,2^{8\,x\,{\mathrm {e}}^x\,\ln \relax (3)}\,3^{10\,{\mathrm {e}}^x}\,x^{10\,{\mathrm {e}}^x}\,x^{20\,x\,{\mathrm {e}}^{2\,x}\,\ln \relax (3)}\,x^{40\,{\mathrm {e}}^x\,\ln \relax (3)}\,x^{8\,\ln \relax (2)}\,x^{2\,x^2\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)}\,x^{50\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)}\,x^{8\,x\,{\mathrm {e}}^x\,\ln \relax (2)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.59, size = 51, normalized size = 1.82 \begin {gather*} e^{\left (\left (2 x - 10\right ) e^{x} + 4\right ) \log {\left (\frac {3 x}{2} \right )} + \left (\left (4 x - 20\right ) e^{x} + \left (x^{2} - 10 x + 25\right ) e^{2 x} + 4\right ) \log {\left (\frac {3 x}{2} \right )}^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________