3.81.55 \(\int \frac {e^{2 x^2-4 x \log (\frac {1}{x^2})+2 \log ^2(\frac {1}{x^2})} (-4+(-8+32 x+16 x^2+(-32-16 x) \log (\frac {1}{x^2})) \log (x))}{x^3 \log ^2(x)} \, dx\)

Optimal. Leaf size=23 \[ \frac {4 e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x^2 \log (x)} \]

________________________________________________________________________________________

Rubi [F]  time = 2.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x^2-4 x \log \left (\frac {1}{x^2}\right )+2 \log ^2\left (\frac {1}{x^2}\right )} \left (-4+\left (-8+32 x+16 x^2+(-32-16 x) \log \left (\frac {1}{x^2}\right )\right ) \log (x)\right )}{x^3 \log ^2(x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^(2*x^2 - 4*x*Log[x^(-2)] + 2*Log[x^(-2)]^2)*(-4 + (-8 + 32*x + 16*x^2 + (-32 - 16*x)*Log[x^(-2)])*Log[x
]))/(x^3*Log[x]^2),x]

[Out]

-4*Defer[Int][E^(2*(x - Log[x^(-2)])^2)/(x^3*Log[x]^2), x] - 8*Defer[Int][E^(2*(x - Log[x^(-2)])^2)/(x^3*Log[x
]), x] + 32*Defer[Int][E^(2*(x - Log[x^(-2)])^2)/(x^2*Log[x]), x] + 16*Defer[Int][E^(2*(x - Log[x^(-2)])^2)/(x
*Log[x]), x] - 32*Defer[Int][(E^(2*(x - Log[x^(-2)])^2)*Log[x^(-2)])/(x^3*Log[x]), x] - 16*Defer[Int][(E^(2*(x
 - Log[x^(-2)])^2)*Log[x^(-2)])/(x^2*Log[x]), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2} \left (-4+\left (-8+32 x+16 x^2+(-32-16 x) \log \left (\frac {1}{x^2}\right )\right ) \log (x)\right )}{x^3 \log ^2(x)} \, dx\\ &=\int \left (-\frac {4 e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x^3 \log ^2(x)}+\frac {8 e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2} \left (-1+4 x+2 x^2-4 \log \left (\frac {1}{x^2}\right )-2 x \log \left (\frac {1}{x^2}\right )\right )}{x^3 \log (x)}\right ) \, dx\\ &=-\left (4 \int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x^3 \log ^2(x)} \, dx\right )+8 \int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2} \left (-1+4 x+2 x^2-4 \log \left (\frac {1}{x^2}\right )-2 x \log \left (\frac {1}{x^2}\right )\right )}{x^3 \log (x)} \, dx\\ &=-\left (4 \int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x^3 \log ^2(x)} \, dx\right )+8 \int \left (-\frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x^3 \log (x)}+\frac {4 e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x^2 \log (x)}+\frac {2 e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x \log (x)}-\frac {4 e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2} \log \left (\frac {1}{x^2}\right )}{x^3 \log (x)}-\frac {2 e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2} \log \left (\frac {1}{x^2}\right )}{x^2 \log (x)}\right ) \, dx\\ &=-\left (4 \int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x^3 \log ^2(x)} \, dx\right )-8 \int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x^3 \log (x)} \, dx+16 \int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x \log (x)} \, dx-16 \int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2} \log \left (\frac {1}{x^2}\right )}{x^2 \log (x)} \, dx+32 \int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2}}{x^2 \log (x)} \, dx-32 \int \frac {e^{2 \left (x-\log \left (\frac {1}{x^2}\right )\right )^2} \log \left (\frac {1}{x^2}\right )}{x^3 \log (x)} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.59, size = 29, normalized size = 1.26 \begin {gather*} \frac {4 e^{2 \left (x^2+\log ^2\left (\frac {1}{x^2}\right )\right )} \left (\frac {1}{x^2}\right )^{1-4 x}}{\log (x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*x^2 - 4*x*Log[x^(-2)] + 2*Log[x^(-2)]^2)*(-4 + (-8 + 32*x + 16*x^2 + (-32 - 16*x)*Log[x^(-2)])
*Log[x]))/(x^3*Log[x]^2),x]

[Out]

(4*E^(2*(x^2 + Log[x^(-2)]^2))*(x^(-2))^(1 - 4*x))/Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 33, normalized size = 1.43 \begin {gather*} -\frac {8 \, e^{\left (2 \, x^{2} - 4 \, x \log \left (\frac {1}{x^{2}}\right ) + 2 \, \log \left (\frac {1}{x^{2}}\right )^{2}\right )}}{x^{2} \log \left (\frac {1}{x^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-16*x-32)*log(1/x^2)+16*x^2+32*x-8)*log(x)-4)*exp(log(1/x^2)^2-2*x*log(1/x^2)+x^2)^2/x^3/log(x)^2
,x, algorithm="fricas")

[Out]

-8*e^(2*x^2 - 4*x*log(x^(-2)) + 2*log(x^(-2))^2)/(x^2*log(x^(-2)))

________________________________________________________________________________________

giac [A]  time = 0.40, size = 27, normalized size = 1.17 \begin {gather*} \frac {4 \, e^{\left (2 \, x^{2} + 8 \, x \log \relax (x) + 8 \, \log \relax (x)^{2}\right )}}{x^{2} \log \relax (x)} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-16*x-32)*log(1/x^2)+16*x^2+32*x-8)*log(x)-4)*exp(log(1/x^2)^2-2*x*log(1/x^2)+x^2)^2/x^3/log(x)^2
,x, algorithm="giac")

[Out]

4*e^(2*x^2 + 8*x*log(x) + 8*log(x)^2)/(x^2*log(x))

________________________________________________________________________________________

maple [C]  time = 0.12, size = 72, normalized size = 3.13




method result size



risch \(\frac {4 \,{\mathrm e}^{\frac {\left (-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4 \ln \relax (x )+2 x \right )^{2}}{2}}}{x^{2} \ln \relax (x )}\) \(72\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-16*x-32)*ln(1/x^2)+16*x^2+32*x-8)*ln(x)-4)*exp(ln(1/x^2)^2-2*x*ln(1/x^2)+x^2)^2/x^3/ln(x)^2,x,method=_
RETURNVERBOSE)

[Out]

4/x^2/ln(x)*exp(1/2*(-I*Pi*csgn(I*x^2)^3+2*I*Pi*csgn(I*x)*csgn(I*x^2)^2-I*Pi*csgn(I*x)^2*csgn(I*x^2)+4*ln(x)+2
*x)^2)

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 27, normalized size = 1.17 \begin {gather*} \frac {4 \, e^{\left (2 \, x^{2} + 8 \, x \log \relax (x) + 8 \, \log \relax (x)^{2}\right )}}{x^{2} \log \relax (x)} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-16*x-32)*log(1/x^2)+16*x^2+32*x-8)*log(x)-4)*exp(log(1/x^2)^2-2*x*log(1/x^2)+x^2)^2/x^3/log(x)^2
,x, algorithm="maxima")

[Out]

4*e^(2*x^2 + 8*x*log(x) + 8*log(x)^2)/(x^2*log(x))

________________________________________________________________________________________

mupad [B]  time = 9.09, size = 29, normalized size = 1.26 \begin {gather*} \frac {4\,{\mathrm {e}}^{2\,{\ln \left (\frac {1}{x^2}\right )}^2}\,{\mathrm {e}}^{2\,x^2}\,{\left (x^8\right )}^x}{x^2\,\ln \relax (x)} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(2*log(1/x^2)^2 - 4*x*log(1/x^2) + 2*x^2)*(log(x)*(32*x + 16*x^2 - log(1/x^2)*(16*x + 32) - 8) - 4))/(
x^3*log(x)^2),x)

[Out]

(4*exp(2*log(1/x^2)^2)*exp(2*x^2)*(x^8)^x)/(x^2*log(x))

________________________________________________________________________________________

sympy [A]  time = 0.34, size = 27, normalized size = 1.17 \begin {gather*} \frac {4 e^{2 x^{2} + 8 x \log {\relax (x )} + 8 \log {\relax (x )}^{2}}}{x^{2} \log {\relax (x )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-16*x-32)*ln(1/x**2)+16*x**2+32*x-8)*ln(x)-4)*exp(ln(1/x**2)**2-2*x*ln(1/x**2)+x**2)**2/x**3/ln(x
)**2,x)

[Out]

4*exp(2*x**2 + 8*x*log(x) + 8*log(x)**2)/(x**2*log(x))

________________________________________________________________________________________