Optimal. Leaf size=24 \[ 11-\log \left (\frac {1}{5} e^{2 e^{64 e^2 x^2}} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 17, normalized size of antiderivative = 0.71, number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {14, 2209} \begin {gather*} -2 e^{64 e^2 x^2}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1}{x}-256 e^{2+64 e^2 x^2} x\right ) \, dx\\ &=-\log (x)-256 \int e^{2+64 e^2 x^2} x \, dx\\ &=-2 e^{64 e^2 x^2}-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 0.71 \begin {gather*} -2 e^{64 e^2 x^2}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 22, normalized size = 0.92 \begin {gather*} -{\left (e^{2} \log \relax (x) + 2 \, e^{\left (64 \, x^{2} e^{2} + 2\right )}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 28, normalized size = 1.17 \begin {gather*} -\frac {1}{2} \, {\left (e^{2} \log \left (64 \, x^{2} e^{2}\right ) + 4 \, e^{\left (64 \, x^{2} e^{2} + 2\right )}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.67
method | result | size |
risch | \(-2 \,{\mathrm e}^{64 x^{2} {\mathrm e}^{2}}-\ln \relax (x )\) | \(16\) |
norman | \(-2 \,{\mathrm e}^{64 x^{2} {\mathrm e}^{2}}-\ln \relax (x )\) | \(18\) |
default | \(-2 \,{\mathrm e}^{64 x^{2} {\mathrm e}^{2}}-\ln \relax (x )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 15, normalized size = 0.62 \begin {gather*} -2 \, e^{\left (64 \, x^{2} e^{2}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.79, size = 15, normalized size = 0.62 \begin {gather*} -2\,{\mathrm {e}}^{64\,x^2\,{\mathrm {e}}^2}-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.62 \begin {gather*} - 2 e^{64 x^{2} e^{2}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________