Optimal. Leaf size=35 \[ -1+x-\left (e^{1-\frac {5}{x}}+\log \left (\log \left (\frac {1}{4} \log \left (x-\left (4+x^2\right )^2\right )\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 8.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-5+x}{x}} \left (2 x^2-32 x^3-8 x^5\right )+\left (16 x^2-x^3+8 x^4+x^6+e^{\frac {2 (-5+x)}{x}} \left (-160+10 x-80 x^2-10 x^4\right )\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )+\left (2 x^2-32 x^3-8 x^5+e^{\frac {-5+x}{x}} \left (-160+10 x-80 x^2-10 x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16 x^2-x^3+8 x^4+x^6\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-5+x}{x}} \left (2 x^2-32 x^3-8 x^5\right )+\left (16 x^2-x^3+8 x^4+x^6+e^{\frac {2 (-5+x)}{x}} \left (-160+10 x-80 x^2-10 x^4\right )\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )+\left (2 x^2-32 x^3-8 x^5+e^{\frac {-5+x}{x}} \left (-160+10 x-80 x^2-10 x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{x^2 \left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx\\ &=\int \left (-\frac {10 e^{2-\frac {10}{x}}}{x^2}+\frac {16}{16-x+8 x^2+x^4}-\frac {x}{16-x+8 x^2+x^4}+\frac {8 x^2}{16-x+8 x^2+x^4}+\frac {x^4}{16-x+8 x^2+x^4}+\frac {2 \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )}-\frac {32 x \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )}-\frac {8 x^3 \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )}-\frac {2 e^{1-\frac {5}{x}} \left (-x^2+16 x^3+4 x^5+80 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )-5 x \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+40 x^2 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+5 x^4 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )\right )}{x^2 \left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )}\right ) \, dx\\ &=2 \int \frac {\log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx-2 \int \frac {e^{1-\frac {5}{x}} \left (-x^2+16 x^3+4 x^5+80 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )-5 x \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+40 x^2 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+5 x^4 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )\right )}{x^2 \left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx+8 \int \frac {x^2}{16-x+8 x^2+x^4} \, dx-8 \int \frac {x^3 \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx-10 \int \frac {e^{2-\frac {10}{x}}}{x^2} \, dx+16 \int \frac {1}{16-x+8 x^2+x^4} \, dx-32 \int \frac {x \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx-\int \frac {x}{16-x+8 x^2+x^4} \, dx+\int \frac {x^4}{16-x+8 x^2+x^4} \, dx\\ &=-e^{2-\frac {10}{x}}-\frac {2 e^{1-\frac {5}{x}} \left (16 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )-x \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+8 x^2 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+x^4 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )}+2 \int \frac {\log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx+8 \int \frac {x^2}{16-x+8 x^2+x^4} \, dx-8 \int \frac {x^3 \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx+16 \int \frac {1}{16-x+8 x^2+x^4} \, dx-32 \int \frac {x \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx-\int \frac {x}{16-x+8 x^2+x^4} \, dx+\int \left (1-\frac {16-x+8 x^2}{16-x+8 x^2+x^4}\right ) \, dx\\ &=-e^{2-\frac {10}{x}}+x-\frac {2 e^{1-\frac {5}{x}} \left (16 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )-x \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+8 x^2 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+x^4 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )}+2 \int \frac {\log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx+8 \int \frac {x^2}{16-x+8 x^2+x^4} \, dx-8 \int \frac {x^3 \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx+16 \int \frac {1}{16-x+8 x^2+x^4} \, dx-32 \int \frac {x \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx-\int \frac {x}{16-x+8 x^2+x^4} \, dx-\int \frac {16-x+8 x^2}{16-x+8 x^2+x^4} \, dx\\ &=-e^{2-\frac {10}{x}}+x-\frac {2 e^{1-\frac {5}{x}} \left (16 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )-x \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+8 x^2 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+x^4 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )}+2 \int \frac {\log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx+8 \int \frac {x^2}{16-x+8 x^2+x^4} \, dx-8 \int \frac {x^3 \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx+16 \int \frac {1}{16-x+8 x^2+x^4} \, dx-32 \int \frac {x \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx-\int \frac {x}{16-x+8 x^2+x^4} \, dx-\int \left (\frac {16}{16-x+8 x^2+x^4}-\frac {x}{16-x+8 x^2+x^4}+\frac {8 x^2}{16-x+8 x^2+x^4}\right ) \, dx\\ &=-e^{2-\frac {10}{x}}+x-\frac {2 e^{1-\frac {5}{x}} \left (16 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )-x \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+8 x^2 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )+x^4 \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right ) \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )}+2 \int \frac {\log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx-8 \int \frac {x^3 \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx-32 \int \frac {x \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )}{\left (16-x+8 x^2+x^4\right ) \log \left (-16+x-8 x^2-x^4\right ) \log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 68, normalized size = 1.94 \begin {gather*} -e^{2-\frac {10}{x}}+x-2 e^{1-\frac {5}{x}} \log \left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right )-\log ^2\left (\log \left (\frac {1}{4} \log \left (-16+x-8 x^2-x^4\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.53, size = 63, normalized size = 1.80 \begin {gather*} -2 \, e^{\left (\frac {x - 5}{x}\right )} \log \left (\log \left (\frac {1}{4} \, \log \left (-x^{4} - 8 \, x^{2} + x - 16\right )\right )\right ) - \log \left (\log \left (\frac {1}{4} \, \log \left (-x^{4} - 8 \, x^{2} + x - 16\right )\right )\right )^{2} + x - e^{\left (\frac {2 \, {\left (x - 5\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{6} + 8 \, x^{4} - x^{3} + 16 \, x^{2} - 10 \, {\left (x^{4} + 8 \, x^{2} - x + 16\right )} e^{\left (\frac {2 \, {\left (x - 5\right )}}{x}\right )}\right )} \log \left (-x^{4} - 8 \, x^{2} + x - 16\right ) \log \left (\frac {1}{4} \, \log \left (-x^{4} - 8 \, x^{2} + x - 16\right )\right ) - 2 \, {\left (4 \, x^{5} + 16 \, x^{3} - x^{2}\right )} e^{\left (\frac {x - 5}{x}\right )} - 2 \, {\left (4 \, x^{5} + 5 \, {\left (x^{4} + 8 \, x^{2} - x + 16\right )} e^{\left (\frac {x - 5}{x}\right )} \log \left (-x^{4} - 8 \, x^{2} + x - 16\right ) \log \left (\frac {1}{4} \, \log \left (-x^{4} - 8 \, x^{2} + x - 16\right )\right ) + 16 \, x^{3} - x^{2}\right )} \log \left (\log \left (\frac {1}{4} \, \log \left (-x^{4} - 8 \, x^{2} + x - 16\right )\right )\right )}{{\left (x^{6} + 8 \, x^{4} - x^{3} + 16 \, x^{2}\right )} \log \left (-x^{4} - 8 \, x^{2} + x - 16\right ) \log \left (\frac {1}{4} \, \log \left (-x^{4} - 8 \, x^{2} + x - 16\right )\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 64, normalized size = 1.83
method | result | size |
risch | \(-{\mathrm e}^{\frac {2 x -10}{x}}-2 \,{\mathrm e}^{\frac {x -5}{x}} \ln \left (\ln \left (\frac {\ln \left (-x^{4}-8 x^{2}+x -16\right )}{4}\right )\right )-\ln \left (\ln \left (\frac {\ln \left (-x^{4}-8 x^{2}+x -16\right )}{4}\right )\right )^{2}+x\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 81, normalized size = 2.31 \begin {gather*} -{\left (e^{\frac {10}{x}} \log \left (-2 \, \log \relax (2) + \log \left (\log \left (-x^{4} - 8 \, x^{2} + x - 16\right )\right )\right )^{2} - x e^{\frac {10}{x}} + 2 \, e^{\left (\frac {5}{x} + 1\right )} \log \left (-2 \, \log \relax (2) + \log \left (\log \left (-x^{4} - 8 \, x^{2} + x - 16\right )\right )\right ) + e^{2}\right )} e^{\left (-\frac {10}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{\frac {x-5}{x}}\,\left (8\,x^5+32\,x^3-2\,x^2\right )+\ln \left (\ln \left (\frac {\ln \left (-x^4-8\,x^2+x-16\right )}{4}\right )\right )\,\left (32\,x^3-2\,x^2+8\,x^5+{\mathrm {e}}^{\frac {x-5}{x}}\,\ln \left (\frac {\ln \left (-x^4-8\,x^2+x-16\right )}{4}\right )\,\ln \left (-x^4-8\,x^2+x-16\right )\,\left (10\,x^4+80\,x^2-10\,x+160\right )\right )-\ln \left (\frac {\ln \left (-x^4-8\,x^2+x-16\right )}{4}\right )\,\ln \left (-x^4-8\,x^2+x-16\right )\,\left (16\,x^2-{\mathrm {e}}^{\frac {2\,\left (x-5\right )}{x}}\,\left (10\,x^4+80\,x^2-10\,x+160\right )-x^3+8\,x^4+x^6\right )}{\ln \left (\frac {\ln \left (-x^4-8\,x^2+x-16\right )}{4}\right )\,\ln \left (-x^4-8\,x^2+x-16\right )\,\left (x^6+8\,x^4-x^3+16\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________