Optimal. Leaf size=26 \[ e^{x^2} \left (4-e^{\left (5+e^2\right )^2}-x+2 \log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 37, normalized size of antiderivative = 1.42, number of steps used = 10, number of rules used = 7, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {14, 2204, 2210, 2209, 2212, 2554, 12} \begin {gather*} -e^{x^2} x+\left (4-e^{\left (5+e^2\right )^2}\right ) e^{x^2}+2 e^{x^2} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2204
Rule 2209
Rule 2210
Rule 2212
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{x^2}+\frac {2 e^{x^2}}{x}+8 e^{x^2} \left (1-\frac {1}{4} e^{\left (5+e^2\right )^2}\right ) x-2 e^{x^2} x^2+4 e^{x^2} x \log (x)\right ) \, dx\\ &=2 \int \frac {e^{x^2}}{x} \, dx-2 \int e^{x^2} x^2 \, dx+4 \int e^{x^2} x \log (x) \, dx+\left (2 \left (4-e^{\left (5+e^2\right )^2}\right )\right ) \int e^{x^2} x \, dx-\int e^{x^2} \, dx\\ &=e^{x^2} \left (4-e^{\left (5+e^2\right )^2}\right )-e^{x^2} x-\frac {1}{2} \sqrt {\pi } \text {erfi}(x)+\text {Ei}\left (x^2\right )+2 e^{x^2} \log (x)-4 \int \frac {e^{x^2}}{2 x} \, dx+\int e^{x^2} \, dx\\ &=e^{x^2} \left (4-e^{\left (5+e^2\right )^2}\right )-e^{x^2} x+\text {Ei}\left (x^2\right )+2 e^{x^2} \log (x)-2 \int \frac {e^{x^2}}{x} \, dx\\ &=e^{x^2} \left (4-e^{\left (5+e^2\right )^2}\right )-e^{x^2} x+2 e^{x^2} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 23, normalized size = 0.88 \begin {gather*} -e^{x^2} \left (-4+e^{\left (5+e^2\right )^2}+x-2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 55, normalized size = 2.12 \begin {gather*} -{\left ({\left (x + e^{\left (e^{4} + 10 \, e^{2} + 25\right )} - 4\right )} e^{\left (x^{2} + e^{4} + 10 \, e^{2} + 25\right )} - 2 \, e^{\left (x^{2} + e^{4} + 10 \, e^{2} + 25\right )} \log \relax (x)\right )} e^{\left (-e^{4} - 10 \, e^{2} - 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 36, normalized size = 1.38 \begin {gather*} -x e^{\left (x^{2}\right )} + 2 \, e^{\left (x^{2}\right )} \log \relax (x) - e^{\left (x^{2} + e^{4} + 10 \, e^{2} + 25\right )} + 4 \, e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 28, normalized size = 1.08
method | result | size |
risch | \(2 \,{\mathrm e}^{x^{2}} \ln \relax (x )-\left ({\mathrm e}^{{\mathrm e}^{4}+10 \,{\mathrm e}^{2}+25}+x -4\right ) {\mathrm e}^{x^{2}}\) | \(28\) |
default | \(-{\mathrm e}^{x^{2}} x +2 \,{\mathrm e}^{x^{2}} \ln \relax (x )+4 \,{\mathrm e}^{x^{2}}-{\mathrm e}^{x^{2}+{\mathrm e}^{4}+10 \,{\mathrm e}^{2}+25}\) | \(37\) |
norman | \(\left (-{\mathrm e}^{25} {\mathrm e}^{{\mathrm e}^{4}} {\mathrm e}^{10 \,{\mathrm e}^{2}}+4\right ) {\mathrm e}^{x^{2}}-{\mathrm e}^{x^{2}} x +2 \,{\mathrm e}^{x^{2}} \ln \relax (x )\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 36, normalized size = 1.38 \begin {gather*} -x e^{\left (x^{2}\right )} + 2 \, e^{\left (x^{2}\right )} \log \relax (x) - e^{\left (x^{2} + e^{4} + 10 \, e^{2} + 25\right )} + 4 \, e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.13, size = 22, normalized size = 0.85 \begin {gather*} -{\mathrm {e}}^{x^2}\,\left (x-2\,\ln \relax (x)+{\mathrm {e}}^{10\,{\mathrm {e}}^2+{\mathrm {e}}^4+25}-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 27, normalized size = 1.04 \begin {gather*} \left (- x + 2 \log {\relax (x )} - e^{25} e^{10 e^{2}} e^{e^{4}} + 4\right ) e^{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________