Optimal. Leaf size=30 \[ \left (e^{e^{e^4+e^x-x}}+e^{\frac {2}{x (2+x)}}+x\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 21.16, antiderivative size = 31, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 5, integrand size = 302, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {1594, 27, 6688, 12, 6686} \begin {gather*} \left (e^{\frac {2}{x^2+2 x}}+x+e^{e^{-x+e^x+e^4}}\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {4}{2 x+x^2}} (-8-8 x)+8 x^3+8 x^4+2 x^5+e^{\frac {2}{2 x+x^2}} \left (-8 x+8 x^3+2 x^4\right )+e^{e^4+2 e^{e^4+e^x-x}+e^x-x} \left (-8 x^2-8 x^3-2 x^4+e^x \left (8 x^2+8 x^3+2 x^4\right )\right )+e^{e^{e^4+e^x-x}} \left (e^{\frac {2}{2 x+x^2}} (-8-8 x)+8 x^2+8 x^3+2 x^4+e^{e^4+e^x-x} \left (-8 x^3-8 x^4-2 x^5+e^{\frac {2}{2 x+x^2}} \left (-8 x^2-8 x^3-2 x^4\right )+e^x \left (8 x^3+8 x^4+2 x^5+e^{\frac {2}{2 x+x^2}} \left (8 x^2+8 x^3+2 x^4\right )\right )\right )\right )}{x^2 \left (4+4 x+x^2\right )} \, dx\\ &=\int \frac {e^{\frac {4}{2 x+x^2}} (-8-8 x)+8 x^3+8 x^4+2 x^5+e^{\frac {2}{2 x+x^2}} \left (-8 x+8 x^3+2 x^4\right )+e^{e^4+2 e^{e^4+e^x-x}+e^x-x} \left (-8 x^2-8 x^3-2 x^4+e^x \left (8 x^2+8 x^3+2 x^4\right )\right )+e^{e^{e^4+e^x-x}} \left (e^{\frac {2}{2 x+x^2}} (-8-8 x)+8 x^2+8 x^3+2 x^4+e^{e^4+e^x-x} \left (-8 x^3-8 x^4-2 x^5+e^{\frac {2}{2 x+x^2}} \left (-8 x^2-8 x^3-2 x^4\right )+e^x \left (8 x^3+8 x^4+2 x^5+e^{\frac {2}{2 x+x^2}} \left (8 x^2+8 x^3+2 x^4\right )\right )\right )\right )}{x^2 (2+x)^2} \, dx\\ &=\int \frac {2 e^{-x} \left (e^{e^{e^4+e^x-x}}+e^{\frac {2}{2 x+x^2}}+x\right ) \left (-4 e^{x+\frac {2}{2 x+x^2}} (1+x)-e^{e^4+e^{e^4+e^x-x}+e^x} x^2 (2+x)^2+e^x x^2 (2+x)^2+e^{e^4+e^{e^4+e^x-x}+e^x+x} x^2 (2+x)^2\right )}{x^2 (2+x)^2} \, dx\\ &=2 \int \frac {e^{-x} \left (e^{e^{e^4+e^x-x}}+e^{\frac {2}{2 x+x^2}}+x\right ) \left (-4 e^{x+\frac {2}{2 x+x^2}} (1+x)-e^{e^4+e^{e^4+e^x-x}+e^x} x^2 (2+x)^2+e^x x^2 (2+x)^2+e^{e^4+e^{e^4+e^x-x}+e^x+x} x^2 (2+x)^2\right )}{x^2 (2+x)^2} \, dx\\ &=\left (e^{e^{e^4+e^x-x}}+e^{\frac {2}{2 x+x^2}}+x\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.50, size = 47, normalized size = 1.57 \begin {gather*} e^{-\frac {2}{2+x}} \left (e^{\frac {1}{x}}+e^{e^{e^4+e^x-x}+\frac {1}{2+x}}+e^{\frac {1}{2+x}} x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 69, normalized size = 2.30 \begin {gather*} x^{2} + 2 \, x e^{\left (\frac {2}{x^{2} + 2 \, x}\right )} + 2 \, {\left (x + e^{\left (\frac {2}{x^{2} + 2 \, x}\right )}\right )} e^{\left (e^{\left (-x + e^{4} + e^{x}\right )}\right )} + e^{\left (2 \, e^{\left (-x + e^{4} + e^{x}\right )}\right )} + e^{\left (\frac {4}{x^{2} + 2 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3} - {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2} - {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2}\right )} e^{x}\right )} e^{\left (-x + e^{4} + e^{x} + 2 \, e^{\left (-x + e^{4} + e^{x}\right )}\right )} - 4 \, {\left (x + 1\right )} e^{\left (\frac {4}{x^{2} + 2 \, x}\right )} + {\left (x^{4} + 4 \, x^{3} - 4 \, x\right )} e^{\left (\frac {2}{x^{2} + 2 \, x}\right )} + {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2} - {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3} - {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3} + {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2}\right )} e^{\left (\frac {2}{x^{2} + 2 \, x}\right )}\right )} e^{x} + {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2}\right )} e^{\left (\frac {2}{x^{2} + 2 \, x}\right )}\right )} e^{\left (-x + e^{4} + e^{x}\right )} - 4 \, {\left (x + 1\right )} e^{\left (\frac {2}{x^{2} + 2 \, x}\right )}\right )} e^{\left (e^{\left (-x + e^{4} + e^{x}\right )}\right )}\right )}}{x^{4} + 4 \, x^{3} + 4 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.15, size = 70, normalized size = 2.33
method | result | size |
risch | \(x^{2}+2 x \,{\mathrm e}^{\frac {2}{x \left (2+x \right )}}+{\mathrm e}^{\frac {4}{x \left (2+x \right )}}+{\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{4}-x}}+\left (2 x +2 \,{\mathrm e}^{\frac {2}{x \left (2+x \right )}}\right ) {\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{4}-x}}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.68, size = 64, normalized size = 2.13 \begin {gather*} x^{2} + {\left (2 \, x e^{\frac {1}{x}} + 2 \, {\left (x e^{\left (\frac {1}{x + 2}\right )} + e^{\frac {1}{x}}\right )} e^{\left (e^{\left (-x + e^{4} + e^{x}\right )}\right )} + e^{\left (\frac {1}{x + 2} + 2 \, e^{\left (-x + e^{4} + e^{x}\right )}\right )}\right )} e^{\left (-\frac {1}{x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.55, size = 75, normalized size = 2.50 \begin {gather*} {\mathrm {e}}^{2\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{{\mathrm {e}}^4}}+{\mathrm {e}}^{\frac {4}{x^2+2\,x}}+2\,x\,{\mathrm {e}}^{\frac {2}{x^2+2\,x}}+{\mathrm {e}}^{{\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{{\mathrm {e}}^4}}\,\left (2\,x+2\,{\mathrm {e}}^{\frac {2}{x^2+2\,x}}\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________