Optimal. Leaf size=20 \[ \frac {3 \log ^2\left (3 \left (4+e^x+x\right )^2\right )}{4 x} \]
________________________________________________________________________________________
Rubi [F] time = 3.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (12 x+12 e^x x\right ) \log \left (48+3 e^{2 x}+24 x+3 x^2+e^x (24+6 x)\right )+\left (-12-3 e^x-3 x\right ) \log ^2\left (48+3 e^{2 x}+24 x+3 x^2+e^x (24+6 x)\right )}{16 x^2+4 e^x x^2+4 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (\frac {4 \left (1+e^x\right ) x}{4+e^x+x}-\log \left (3 \left (4+e^x+x\right )^2\right )\right ) \log \left (3 \left (4+e^x+x\right )^2\right )}{4 x^2} \, dx\\ &=\frac {3}{4} \int \frac {\left (\frac {4 \left (1+e^x\right ) x}{4+e^x+x}-\log \left (3 \left (4+e^x+x\right )^2\right )\right ) \log \left (3 \left (4+e^x+x\right )^2\right )}{x^2} \, dx\\ &=\frac {3}{4} \int \left (-\frac {4 (3+x) \log \left (3 \left (4+e^x+x\right )^2\right )}{x \left (4+e^x+x\right )}+\frac {\left (4 x-\log \left (3 \left (4+e^x+x\right )^2\right )\right ) \log \left (3 \left (4+e^x+x\right )^2\right )}{x^2}\right ) \, dx\\ &=\frac {3}{4} \int \frac {\left (4 x-\log \left (3 \left (4+e^x+x\right )^2\right )\right ) \log \left (3 \left (4+e^x+x\right )^2\right )}{x^2} \, dx-3 \int \frac {(3+x) \log \left (3 \left (4+e^x+x\right )^2\right )}{x \left (4+e^x+x\right )} \, dx\\ &=\frac {3}{4} \int \left (\frac {4 \log \left (3 \left (4+e^x+x\right )^2\right )}{x}-\frac {\log ^2\left (3 \left (4+e^x+x\right )^2\right )}{x^2}\right ) \, dx+3 \int \frac {2 \left (1+e^x\right ) \left (\int \frac {1}{4+e^x+x} \, dx+3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx\right )}{4+e^x+x} \, dx-\left (3 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{4+e^x+x} \, dx-\left (9 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{x \left (4+e^x+x\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {\log ^2\left (3 \left (4+e^x+x\right )^2\right )}{x^2} \, dx\right )+3 \int \frac {\log \left (3 \left (4+e^x+x\right )^2\right )}{x} \, dx+6 \int \frac {\left (1+e^x\right ) \left (\int \frac {1}{4+e^x+x} \, dx+3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx\right )}{4+e^x+x} \, dx-\left (3 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{4+e^x+x} \, dx-\left (9 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{x \left (4+e^x+x\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {\log ^2\left (3 \left (4+e^x+x\right )^2\right )}{x^2} \, dx\right )+3 \int \frac {\log \left (3 \left (4+e^x+x\right )^2\right )}{x} \, dx+6 \int \left (\int \frac {1}{4+e^x+x} \, dx+3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx-\frac {(3+x) \left (\int \frac {1}{4+e^x+x} \, dx+3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx\right )}{4+e^x+x}\right ) \, dx-\left (3 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{4+e^x+x} \, dx-\left (9 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{x \left (4+e^x+x\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {\log ^2\left (3 \left (4+e^x+x\right )^2\right )}{x^2} \, dx\right )+3 \int \frac {\log \left (3 \left (4+e^x+x\right )^2\right )}{x} \, dx+6 \int \left (\int \frac {1}{4+e^x+x} \, dx\right ) \, dx-6 \int \frac {(3+x) \left (\int \frac {1}{4+e^x+x} \, dx+3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx\right )}{4+e^x+x} \, dx+18 \int \left (\int \frac {1}{x \left (4+e^x+x\right )} \, dx\right ) \, dx-\left (3 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{4+e^x+x} \, dx-\left (9 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{x \left (4+e^x+x\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {\log ^2\left (3 \left (4+e^x+x\right )^2\right )}{x^2} \, dx\right )+3 \int \frac {\log \left (3 \left (4+e^x+x\right )^2\right )}{x} \, dx+6 \int \left (\int \frac {1}{4+e^x+x} \, dx\right ) \, dx-6 \int \left (\frac {3 \left (\int \frac {1}{4+e^x+x} \, dx+3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx\right )}{4+e^x+x}+\frac {x \left (\int \frac {1}{4+e^x+x} \, dx+3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx\right )}{4+e^x+x}\right ) \, dx+18 \int \left (\int \frac {1}{x \left (4+e^x+x\right )} \, dx\right ) \, dx-\left (3 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{4+e^x+x} \, dx-\left (9 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{x \left (4+e^x+x\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {\log ^2\left (3 \left (4+e^x+x\right )^2\right )}{x^2} \, dx\right )+3 \int \frac {\log \left (3 \left (4+e^x+x\right )^2\right )}{x} \, dx+6 \int \left (\int \frac {1}{4+e^x+x} \, dx\right ) \, dx-6 \int \frac {x \left (\int \frac {1}{4+e^x+x} \, dx+3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx\right )}{4+e^x+x} \, dx+18 \int \left (\int \frac {1}{x \left (4+e^x+x\right )} \, dx\right ) \, dx-18 \int \frac {\int \frac {1}{4+e^x+x} \, dx+3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx}{4+e^x+x} \, dx-\left (3 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{4+e^x+x} \, dx-\left (9 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{x \left (4+e^x+x\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {\log ^2\left (3 \left (4+e^x+x\right )^2\right )}{x^2} \, dx\right )+3 \int \frac {\log \left (3 \left (4+e^x+x\right )^2\right )}{x} \, dx+6 \int \left (\int \frac {1}{4+e^x+x} \, dx\right ) \, dx-6 \int \left (\frac {x \int \frac {1}{4+e^x+x} \, dx}{4+e^x+x}+\frac {3 x \int \frac {1}{x \left (4+e^x+x\right )} \, dx}{4+e^x+x}\right ) \, dx+18 \int \left (\int \frac {1}{x \left (4+e^x+x\right )} \, dx\right ) \, dx-18 \int \left (\frac {\int \frac {1}{4+e^x+x} \, dx}{4+e^x+x}+\frac {3 \int \frac {1}{x \left (4+e^x+x\right )} \, dx}{4+e^x+x}\right ) \, dx-\left (3 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{4+e^x+x} \, dx-\left (9 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{x \left (4+e^x+x\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {\log ^2\left (3 \left (4+e^x+x\right )^2\right )}{x^2} \, dx\right )+3 \int \frac {\log \left (3 \left (4+e^x+x\right )^2\right )}{x} \, dx+6 \int \left (\int \frac {1}{4+e^x+x} \, dx\right ) \, dx-6 \int \frac {x \int \frac {1}{4+e^x+x} \, dx}{4+e^x+x} \, dx-18 \int \frac {\int \frac {1}{4+e^x+x} \, dx}{4+e^x+x} \, dx+18 \int \left (\int \frac {1}{x \left (4+e^x+x\right )} \, dx\right ) \, dx-18 \int \frac {x \int \frac {1}{x \left (4+e^x+x\right )} \, dx}{4+e^x+x} \, dx-54 \int \frac {\int \frac {1}{x \left (4+e^x+x\right )} \, dx}{4+e^x+x} \, dx-\left (3 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{4+e^x+x} \, dx-\left (9 \log \left (3 \left (4+e^x+x\right )^2\right )\right ) \int \frac {1}{x \left (4+e^x+x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 20, normalized size = 1.00 \begin {gather*} \frac {3 \log ^2\left (3 \left (4+e^x+x\right )^2\right )}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 31, normalized size = 1.55 \begin {gather*} \frac {3 \, \log \left (3 \, x^{2} + 6 \, {\left (x + 4\right )} e^{x} + 24 \, x + 3 \, e^{\left (2 \, x\right )} + 48\right )^{2}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.46, size = 33, normalized size = 1.65 \begin {gather*} \frac {3 \, \log \left (3 \, x^{2} + 6 \, x e^{x} + 24 \, x + 3 \, e^{\left (2 \, x\right )} + 24 \, e^{x} + 48\right )^{2}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.18, size = 319, normalized size = 15.95
method | result | size |
risch | \(\frac {3 \ln \left (4+x +{\mathrm e}^{x}\right )^{2}}{x}+\frac {3 \left (-i \pi \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )\right )^{2} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )^{3}+2 \ln \relax (3)\right ) \ln \left (4+x +{\mathrm e}^{x}\right )}{2 x}+\frac {\frac {3 \ln \relax (3)^{2}}{4}-\frac {9 \pi ^{2} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )\right )^{2} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )^{4}}{8}+\frac {3 \pi ^{2} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )^{5}}{4}-\frac {3 i \ln \relax (3) \pi \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )^{3}}{4}-\frac {3 i \ln \relax (3) \pi \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )\right )^{2} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )}{4}+\frac {3 i \ln \relax (3) \pi \,\mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )^{2}}{2}-\frac {3 \pi ^{2} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )^{6}}{16}-\frac {3 \pi ^{2} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )\right )^{4} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )^{2}}{16}+\frac {3 \pi ^{2} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )\right )^{3} \mathrm {csgn}\left (i \left (4+x +{\mathrm e}^{x}\right )^{2}\right )^{3}}{4}}{x}\) | \(319\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 30, normalized size = 1.50 \begin {gather*} \frac {3 \, {\left (\log \relax (3)^{2} + 4 \, \log \relax (3) \log \left (x + e^{x} + 4\right ) + 4 \, \log \left (x + e^{x} + 4\right )^{2}\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.44, size = 32, normalized size = 1.60 \begin {gather*} \frac {3\,{\ln \left (24\,x+3\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^x\,\left (6\,x+24\right )+3\,x^2+48\right )}^2}{4\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 32, normalized size = 1.60 \begin {gather*} \frac {3 \log {\left (3 x^{2} + 24 x + \left (6 x + 24\right ) e^{x} + 3 e^{2 x} + 48 \right )}^{2}}{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________