Optimal. Leaf size=28 \[ \frac {1}{2} x^2 (5+x) \left (5+e^{2-2 x}+\frac {x}{4}-\log (5)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 68, normalized size of antiderivative = 2.43, number of steps used = 15, number of rules used = 5, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.096, Rules used = {12, 1594, 2196, 2176, 2194} \begin {gather*} \frac {x^4}{8}+\frac {1}{2} e^{2-2 x} x^3+\frac {25 x^3}{8}-\frac {1}{2} x^3 \log (5)+\frac {5}{2} e^{2-2 x} x^2+\frac {25 x^2}{2}-\frac {5}{2} x^2 \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \left (200 x+75 x^2+4 x^3+e^{2-2 x} \left (40 x-28 x^2-8 x^3\right )+\left (-40 x-12 x^2\right ) \log (5)\right ) \, dx\\ &=\frac {25 x^2}{2}+\frac {25 x^3}{8}+\frac {x^4}{8}+\frac {1}{8} \int e^{2-2 x} \left (40 x-28 x^2-8 x^3\right ) \, dx+\frac {1}{8} \log (5) \int \left (-40 x-12 x^2\right ) \, dx\\ &=\frac {25 x^2}{2}+\frac {25 x^3}{8}+\frac {x^4}{8}-\frac {5}{2} x^2 \log (5)-\frac {1}{2} x^3 \log (5)+\frac {1}{8} \int e^{2-2 x} x \left (40-28 x-8 x^2\right ) \, dx\\ &=\frac {25 x^2}{2}+\frac {25 x^3}{8}+\frac {x^4}{8}-\frac {5}{2} x^2 \log (5)-\frac {1}{2} x^3 \log (5)+\frac {1}{8} \int \left (40 e^{2-2 x} x-28 e^{2-2 x} x^2-8 e^{2-2 x} x^3\right ) \, dx\\ &=\frac {25 x^2}{2}+\frac {25 x^3}{8}+\frac {x^4}{8}-\frac {5}{2} x^2 \log (5)-\frac {1}{2} x^3 \log (5)-\frac {7}{2} \int e^{2-2 x} x^2 \, dx+5 \int e^{2-2 x} x \, dx-\int e^{2-2 x} x^3 \, dx\\ &=-\frac {5}{2} e^{2-2 x} x+\frac {25 x^2}{2}+\frac {7}{4} e^{2-2 x} x^2+\frac {25 x^3}{8}+\frac {1}{2} e^{2-2 x} x^3+\frac {x^4}{8}-\frac {5}{2} x^2 \log (5)-\frac {1}{2} x^3 \log (5)-\frac {3}{2} \int e^{2-2 x} x^2 \, dx+\frac {5}{2} \int e^{2-2 x} \, dx-\frac {7}{2} \int e^{2-2 x} x \, dx\\ &=-\frac {5}{4} e^{2-2 x}-\frac {3}{4} e^{2-2 x} x+\frac {25 x^2}{2}+\frac {5}{2} e^{2-2 x} x^2+\frac {25 x^3}{8}+\frac {1}{2} e^{2-2 x} x^3+\frac {x^4}{8}-\frac {5}{2} x^2 \log (5)-\frac {1}{2} x^3 \log (5)-\frac {3}{2} \int e^{2-2 x} x \, dx-\frac {7}{4} \int e^{2-2 x} \, dx\\ &=-\frac {3}{8} e^{2-2 x}+\frac {25 x^2}{2}+\frac {5}{2} e^{2-2 x} x^2+\frac {25 x^3}{8}+\frac {1}{2} e^{2-2 x} x^3+\frac {x^4}{8}-\frac {5}{2} x^2 \log (5)-\frac {1}{2} x^3 \log (5)-\frac {3}{4} \int e^{2-2 x} \, dx\\ &=\frac {25 x^2}{2}+\frac {5}{2} e^{2-2 x} x^2+\frac {25 x^3}{8}+\frac {1}{2} e^{2-2 x} x^3+\frac {x^4}{8}-\frac {5}{2} x^2 \log (5)-\frac {1}{2} x^3 \log (5)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 34, normalized size = 1.21 \begin {gather*} \frac {1}{8} e^{-2 x} x^2 (5+x) \left (4 e^2+e^{2 x} (20+x-4 \log (5))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 46, normalized size = 1.64 \begin {gather*} \frac {1}{8} \, x^{4} + \frac {25}{8} \, x^{3} + \frac {25}{2} \, x^{2} + \frac {1}{2} \, {\left (x^{3} + 5 \, x^{2}\right )} e^{\left (-2 \, x + 2\right )} - \frac {1}{2} \, {\left (x^{3} + 5 \, x^{2}\right )} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 46, normalized size = 1.64 \begin {gather*} \frac {1}{8} \, x^{4} + \frac {25}{8} \, x^{3} + \frac {25}{2} \, x^{2} + \frac {1}{2} \, {\left (x^{3} + 5 \, x^{2}\right )} e^{\left (-2 \, x + 2\right )} - \frac {1}{2} \, {\left (x^{3} + 5 \, x^{2}\right )} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 50, normalized size = 1.79
method | result | size |
risch | \(\frac {\left (4 x^{3}+20 x^{2}\right ) {\mathrm e}^{-2 x +2}}{8}-\frac {x^{3} \ln \relax (5)}{2}-\frac {5 x^{2} \ln \relax (5)}{2}+\frac {x^{4}}{8}+\frac {25 x^{3}}{8}+\frac {25 x^{2}}{2}\) | \(50\) |
norman | \(\left (-\frac {5 \ln \relax (5)}{2}+\frac {25}{2}\right ) x^{2}+\left (-\frac {\ln \relax (5)}{2}+\frac {25}{8}\right ) x^{3}+\frac {x^{4}}{8}+\frac {5 x^{2} {\mathrm e}^{-2 x +2}}{2}+\frac {x^{3} {\mathrm e}^{-2 x +2}}{2}\) | \(53\) |
default | \(\frac {25 x^{2}}{2}+\frac {25 x^{3}}{8}+\frac {x^{4}}{8}-\frac {x^{3} \ln \relax (5)}{2}-\frac {5 x^{2} \ln \relax (5)}{2}+3 \,{\mathrm e}^{-2 x +2}-\frac {13 \,{\mathrm e}^{-2 x +2} \left (1-x \right )}{2}+4 \,{\mathrm e}^{-2 x +2} \left (1-x \right )^{2}-\frac {{\mathrm e}^{-2 x +2} \left (1-x \right )^{3}}{2}\) | \(90\) |
derivativedivides | \(-25+25 x +\frac {25 \left (1-x \right )^{2}}{2}+\frac {25 x^{3}}{8}+\frac {x^{4}}{8}+\frac {\ln \relax (5) \left (1-x \right )^{3}}{2}-4 \ln \relax (5) \left (1-x \right )^{2}+\frac {13 \left (1-x \right ) \ln \relax (5)}{2}-\frac {\ln \relax (5)}{2}+3 \,{\mathrm e}^{-2 x +2}-\frac {13 \,{\mathrm e}^{-2 x +2} \left (1-x \right )}{2}+4 \,{\mathrm e}^{-2 x +2} \left (1-x \right )^{2}-\frac {{\mathrm e}^{-2 x +2} \left (1-x \right )^{3}}{2}\) | \(119\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 49, normalized size = 1.75 \begin {gather*} \frac {1}{8} \, x^{4} + \frac {25}{8} \, x^{3} + \frac {25}{2} \, x^{2} + \frac {1}{2} \, {\left (x^{3} e^{2} + 5 \, x^{2} e^{2}\right )} e^{\left (-2 \, x\right )} - \frac {1}{2} \, {\left (x^{3} + 5 \, x^{2}\right )} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 50, normalized size = 1.79 \begin {gather*} \frac {5\,x^2\,{\mathrm {e}}^{2-2\,x}}{2}-x^3\,\left (\frac {\ln \relax (5)}{2}-\frac {25}{8}\right )-x^2\,\left (\frac {5\,\ln \relax (5)}{2}-\frac {25}{2}\right )+\frac {x^3\,{\mathrm {e}}^{2-2\,x}}{2}+\frac {x^4}{8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 46, normalized size = 1.64 \begin {gather*} \frac {x^{4}}{8} + x^{3} \left (\frac {25}{8} - \frac {\log {\relax (5 )}}{2}\right ) + x^{2} \left (\frac {25}{2} - \frac {5 \log {\relax (5 )}}{2}\right ) + \frac {\left (x^{3} + 5 x^{2}\right ) e^{2 - 2 x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________