Optimal. Leaf size=27 \[ -x+\frac {\log (x)}{\log ^2\left (x^2\right )+\log (4+x+x (4+2 x))} \]
________________________________________________________________________________________
Rubi [F] time = 73.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-5 x-4 x^2\right ) \log (x)+\left (-16-20 x-8 x^2\right ) \log (x) \log \left (x^2\right )+\left (4+5 x+2 x^2\right ) \log ^2\left (x^2\right )+\left (-4 x-5 x^2-2 x^3\right ) \log ^4\left (x^2\right )+\left (4+5 x+2 x^2+\left (-8 x-10 x^2-4 x^3\right ) \log ^2\left (x^2\right )\right ) \log \left (4+5 x+2 x^2\right )+\left (-4 x-5 x^2-2 x^3\right ) \log ^2\left (4+5 x+2 x^2\right )}{\left (4 x+5 x^2+2 x^3\right ) \log ^4\left (x^2\right )+\left (8 x+10 x^2+4 x^3\right ) \log ^2\left (x^2\right ) \log \left (4+5 x+2 x^2\right )+\left (4 x+5 x^2+2 x^3\right ) \log ^2\left (4+5 x+2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (x) \left (-\frac {x (5+4 x)}{4+5 x+2 x^2}-4 \log \left (x^2\right )\right )-\left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right ) \left (-1+x \log ^2\left (x^2\right )+x \log \left (4+5 x+2 x^2\right )\right )}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx\\ &=\int \left (-1-\frac {\log (x) \left (5 x+4 x^2+16 \log \left (x^2\right )+20 x \log \left (x^2\right )+8 x^2 \log \left (x^2\right )\right )}{x \left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {1}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )}\right ) \, dx\\ &=-x-\int \frac {\log (x) \left (5 x+4 x^2+16 \log \left (x^2\right )+20 x \log \left (x^2\right )+8 x^2 \log \left (x^2\right )\right )}{x \left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+\int \frac {1}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )} \, dx\\ &=-x+\int \frac {1}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )} \, dx-\int \left (\frac {\log (x) \left (5 x+4 x^2+16 \log \left (x^2\right )+20 x \log \left (x^2\right )+8 x^2 \log \left (x^2\right )\right )}{4 x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}-\frac {(5+2 x) \log (x) \left (5 x+4 x^2+16 \log \left (x^2\right )+20 x \log \left (x^2\right )+8 x^2 \log \left (x^2\right )\right )}{4 \left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}\right ) \, dx\\ &=-x-\frac {1}{4} \int \frac {\log (x) \left (5 x+4 x^2+16 \log \left (x^2\right )+20 x \log \left (x^2\right )+8 x^2 \log \left (x^2\right )\right )}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+\frac {1}{4} \int \frac {(5+2 x) \log (x) \left (5 x+4 x^2+16 \log \left (x^2\right )+20 x \log \left (x^2\right )+8 x^2 \log \left (x^2\right )\right )}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+\int \frac {1}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )} \, dx\\ &=-x-\frac {1}{4} \int \left (\frac {5 \log (x)}{\left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {4 x \log (x)}{\left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {20 \log (x) \log \left (x^2\right )}{\left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {16 \log (x) \log \left (x^2\right )}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {8 x \log (x) \log \left (x^2\right )}{\left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}\right ) \, dx+\frac {1}{4} \int \left (\frac {25 x \log (x)}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {30 x^2 \log (x)}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {8 x^3 \log (x)}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {80 \log (x) \log \left (x^2\right )}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {132 x \log (x) \log \left (x^2\right )}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {80 x^2 \log (x) \log \left (x^2\right )}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}+\frac {16 x^3 \log (x) \log \left (x^2\right )}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2}\right ) \, dx+\int \frac {1}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )} \, dx\\ &=-x-\frac {5}{4} \int \frac {\log (x)}{\left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+2 \int \frac {x^3 \log (x)}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx-2 \int \frac {x \log (x) \log \left (x^2\right )}{\left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx-4 \int \frac {\log (x) \log \left (x^2\right )}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+4 \int \frac {x^3 \log (x) \log \left (x^2\right )}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx-5 \int \frac {\log (x) \log \left (x^2\right )}{\left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+\frac {25}{4} \int \frac {x \log (x)}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+\frac {15}{2} \int \frac {x^2 \log (x)}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+20 \int \frac {\log (x) \log \left (x^2\right )}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+20 \int \frac {x^2 \log (x) \log \left (x^2\right )}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+33 \int \frac {x \log (x) \log \left (x^2\right )}{\left (4+5 x+2 x^2\right ) \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx-\int \frac {x \log (x)}{\left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )^2} \, dx+\int \frac {1}{x \left (\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 27, normalized size = 1.00 \begin {gather*} -x+\frac {\log (x)}{\log ^2\left (x^2\right )+\log \left (4+5 x+2 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 47, normalized size = 1.74 \begin {gather*} -\frac {4 \, x \log \relax (x)^{2} + x \log \left (2 \, x^{2} + 5 \, x + 4\right ) - \log \relax (x)}{4 \, \log \relax (x)^{2} + \log \left (2 \, x^{2} + 5 \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.55, size = 27, normalized size = 1.00 \begin {gather*} -x + \frac {\log \relax (x)}{4 \, \log \relax (x)^{2} + \log \left (2 \, x^{2} + 5 \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 182, normalized size = 6.74
method | result | size |
risch | \(-x +\frac {4 \ln \relax (x )}{-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )^{4}+4 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x \right )^{3}-6 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i x \right )^{2}+4 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{5} \mathrm {csgn}\left (i x \right )-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-8 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+16 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-8 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right )^{3}+16 \ln \relax (x )^{2}+4 \ln \left (2 x^{2}+5 x +4\right )}\) | \(182\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 47, normalized size = 1.74 \begin {gather*} -\frac {4 \, x \log \relax (x)^{2} + x \log \left (2 \, x^{2} + 5 \, x + 4\right ) - \log \relax (x)}{4 \, \log \relax (x)^{2} + \log \left (2 \, x^{2} + 5 \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\ln \left (2\,x^2+5\,x+4\right )}^2\,\left (2\,x^3+5\,x^2+4\,x\right )-\ln \left (2\,x^2+5\,x+4\right )\,\left (5\,x-{\ln \left (x^2\right )}^2\,\left (4\,x^3+10\,x^2+8\,x\right )+2\,x^2+4\right )-{\ln \left (x^2\right )}^2\,\left (2\,x^2+5\,x+4\right )+{\ln \left (x^2\right )}^4\,\left (2\,x^3+5\,x^2+4\,x\right )+\ln \relax (x)\,\left (4\,x^2+5\,x\right )+\ln \left (x^2\right )\,\ln \relax (x)\,\left (8\,x^2+20\,x+16\right )}{\left (2\,x^3+5\,x^2+4\,x\right )\,{\ln \left (x^2\right )}^4+\left (4\,x^3+10\,x^2+8\,x\right )\,{\ln \left (x^2\right )}^2\,\ln \left (2\,x^2+5\,x+4\right )+\left (2\,x^3+5\,x^2+4\,x\right )\,{\ln \left (2\,x^2+5\,x+4\right )}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 22, normalized size = 0.81 \begin {gather*} - x + \frac {\log {\relax (x )}}{4 \log {\relax (x )}^{2} + \log {\left (2 x^{2} + 5 x + 4 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________