Optimal. Leaf size=22 \[ \frac {x^2 \left (9 e^4+x\right )^2}{5-x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {19 x^3-3 x^4+e^8 \left (729 x-81 x^2\right )+e^4 \left (252 x^2-36 x^3\right )+\left (162 e^8 x+54 e^4 x^2+4 x^3\right ) \log (x)}{25-10 x+x^2+(10-2 x) \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (9 e^4+x\right ) \left (-9 e^4 (-9+x)-x (-19+3 x)+2 \left (9 e^4+2 x\right ) \log (x)\right )}{(5-x+\log (x))^2} \, dx\\ &=\int \left (\frac {(-1+x) x \left (9 e^4+x\right )^2}{(-5+x-\log (x))^2}-\frac {2 x \left (81 e^8+27 e^4 x+2 x^2\right )}{-5+x-\log (x)}\right ) \, dx\\ &=-\left (2 \int \frac {x \left (81 e^8+27 e^4 x+2 x^2\right )}{-5+x-\log (x)} \, dx\right )+\int \frac {(-1+x) x \left (9 e^4+x\right )^2}{(-5+x-\log (x))^2} \, dx\\ &=-\left (2 \int \left (\frac {81 e^8 x}{-5+x-\log (x)}+\frac {27 e^4 x^2}{-5+x-\log (x)}+\frac {2 x^3}{-5+x-\log (x)}\right ) \, dx\right )+\int \left (-\frac {81 e^8 x}{(-5+x-\log (x))^2}+\frac {9 e^4 \left (-2+9 e^4\right ) x^2}{(-5+x-\log (x))^2}+\frac {\left (-1+18 e^4\right ) x^3}{(-5+x-\log (x))^2}+\frac {x^4}{(-5+x-\log (x))^2}\right ) \, dx\\ &=-\left (4 \int \frac {x^3}{-5+x-\log (x)} \, dx\right )-\left (54 e^4\right ) \int \frac {x^2}{-5+x-\log (x)} \, dx-\left (81 e^8\right ) \int \frac {x}{(-5+x-\log (x))^2} \, dx-\left (162 e^8\right ) \int \frac {x}{-5+x-\log (x)} \, dx-\left (9 e^4 \left (2-9 e^4\right )\right ) \int \frac {x^2}{(-5+x-\log (x))^2} \, dx+\left (-1+18 e^4\right ) \int \frac {x^3}{(-5+x-\log (x))^2} \, dx+\int \frac {x^4}{(-5+x-\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 23, normalized size = 1.05 \begin {gather*} -\frac {x^2 \left (9 e^4+x\right )^2}{-5+x-\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 29, normalized size = 1.32 \begin {gather*} -\frac {x^{4} + 18 \, x^{3} e^{4} + 81 \, x^{2} e^{8}}{x - \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 29, normalized size = 1.32 \begin {gather*} -\frac {x^{4} + 18 \, x^{3} e^{4} + 81 \, x^{2} e^{8}}{x - \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 1.27
method | result | size |
risch | \(-\frac {\left (81 \,{\mathrm e}^{8}+18 x \,{\mathrm e}^{4}+x^{2}\right ) x^{2}}{-\ln \relax (x )+x -5}\) | \(28\) |
norman | \(\frac {-x^{4}-81 x^{2} {\mathrm e}^{8}-18 x^{3} {\mathrm e}^{4}}{-\ln \relax (x )+x -5}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 29, normalized size = 1.32 \begin {gather*} -\frac {x^{4} + 18 \, x^{3} e^{4} + 81 \, x^{2} e^{8}}{x - \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.72, size = 21, normalized size = 0.95 \begin {gather*} \frac {x^2\,{\left (x+9\,{\mathrm {e}}^4\right )}^2}{\ln \relax (x)-x+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 26, normalized size = 1.18 \begin {gather*} \frac {x^{4} + 18 x^{3} e^{4} + 81 x^{2} e^{8}}{- x + \log {\relax (x )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________