Optimal. Leaf size=31 \[ x \left (e^5+\frac {x^2}{\left (2-e^3-x\right ) \left (-x+x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 49, normalized size of antiderivative = 1.58, number of steps used = 4, number of rules used = 4, integrand size = 127, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {1680, 1814, 21, 8} \begin {gather*} e^5 x+\frac {4 \left (\left (3-e^3\right ) x+e^3-2\right )}{\left (e^3-1\right )^2-4 \left (x+\frac {1}{4} \left (2 e^3-6\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 21
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {\left (1-e^3\right )^2 \left (12-4 e^3+e^5-2 e^8+e^{11}\right )+16 \left (5-4 e^3+e^6\right ) x+8 \left (6-2 e^3-e^5+2 e^8-e^{11}\right ) x^2+16 e^5 x^4}{\left (1-2 e^3+e^6-4 x^2\right )^2} \, dx,x,\frac {1}{4} \left (-6+2 e^3\right )+x\right )\\ &=\frac {4 \left (-2+e^3+\left (3-e^3\right ) x\right )}{\left (-1+e^3\right )^2-4 \left (\frac {1}{4} \left (-6+2 e^3\right )+x\right )^2}-\frac {\operatorname {Subst}\left (\int \frac {-2 e^5 \left (1-e^3\right )^4+8 e^5 \left (1-e^3\right )^2 x^2}{1-2 e^3+e^6-4 x^2} \, dx,x,\frac {1}{4} \left (-6+2 e^3\right )+x\right )}{2 \left (1-e^3\right )^2}\\ &=\frac {4 \left (-2+e^3+\left (3-e^3\right ) x\right )}{\left (-1+e^3\right )^2-4 \left (\frac {1}{4} \left (-6+2 e^3\right )+x\right )^2}+e^5 \operatorname {Subst}\left (\int 1 \, dx,x,\frac {1}{4} \left (-6+2 e^3\right )+x\right )\\ &=e^5 x+\frac {4 \left (-2+e^3+\left (3-e^3\right ) x\right )}{\left (-1+e^3\right )^2-4 \left (\frac {1}{4} \left (-6+2 e^3\right )+x\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 46, normalized size = 1.48 \begin {gather*} \frac {1}{\left (1-e^3\right ) (-1+x)}+e^5 (-1+x)+\frac {\left (-2+e^3\right )^2}{\left (-1+e^3\right ) \left (-2+e^3+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 53, normalized size = 1.71 \begin {gather*} \frac {{\left (x^{2} - x\right )} e^{8} + {\left (x^{3} - 3 \, x^{2} + 2 \, x\right )} e^{5} + {\left (x - 1\right )} e^{3} - 3 \, x + 2}{x^{2} + {\left (x - 1\right )} e^{3} - 3 \, x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 37, normalized size = 1.19
method | result | size |
risch | \(x \,{\mathrm e}^{5}+\frac {\left ({\mathrm e}^{3}-3\right ) x -{\mathrm e}^{3}+2}{x \,{\mathrm e}^{3}+x^{2}-{\mathrm e}^{3}-3 x +2}\) | \(37\) |
norman | \(\frac {x^{3} {\mathrm e}^{5}+2+\left (-{\mathrm e}^{5} {\mathrm e}^{6}+5 \,{\mathrm e}^{3} {\mathrm e}^{5}-7 \,{\mathrm e}^{5}+{\mathrm e}^{3}-3\right ) x +{\mathrm e}^{5} {\mathrm e}^{6}-5 \,{\mathrm e}^{3} {\mathrm e}^{5}+6 \,{\mathrm e}^{5}-{\mathrm e}^{3}}{\left (x -1\right ) \left (x +{\mathrm e}^{3}-2\right )}\) | \(67\) |
gosper | \(-\frac {{\mathrm e}^{5} {\mathrm e}^{6} x -x^{3} {\mathrm e}^{5}-{\mathrm e}^{5} {\mathrm e}^{6}-5 x \,{\mathrm e}^{3} {\mathrm e}^{5}+5 \,{\mathrm e}^{3} {\mathrm e}^{5}+7 x \,{\mathrm e}^{5}-x \,{\mathrm e}^{3}-6 \,{\mathrm e}^{5}+{\mathrm e}^{3}+3 x -2}{x \,{\mathrm e}^{3}+x^{2}-{\mathrm e}^{3}-3 x +2}\) | \(78\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 35, normalized size = 1.13 \begin {gather*} x e^{5} + \frac {x {\left (e^{3} - 3\right )} - e^{3} + 2}{x^{2} + x {\left (e^{3} - 3\right )} - e^{3} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.35, size = 35, normalized size = 1.13 \begin {gather*} \frac {x\,\left ({\mathrm {e}}^3-3\right )-{\mathrm {e}}^3+2}{x^2+\left ({\mathrm {e}}^3-3\right )\,x-{\mathrm {e}}^3+2}+x\,{\mathrm {e}}^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 31, normalized size = 1.00 \begin {gather*} x e^{5} + \frac {x \left (-3 + e^{3}\right ) - e^{3} + 2}{x^{2} + x \left (-3 + e^{3}\right ) - e^{3} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________