Optimal. Leaf size=21 \[ e^{4 x} \left (x+\frac {14 x}{x+\log (3 x)}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 3.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{4 x} \left (-392 x-28 x^2+812 x^3+114 x^4+4 x^5\right )+e^{4 x} \left (364 x+868 x^2+230 x^3+12 x^4\right ) \log (3 x)+e^{4 x} \left (56 x+118 x^2+12 x^3\right ) \log ^2(3 x)+e^{4 x} \left (2 x+4 x^2\right ) \log ^3(3 x)}{x^3+3 x^2 \log (3 x)+3 x \log ^2(3 x)+\log ^3(3 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{4 x} x \left (-196-14 x+406 x^2+57 x^3+2 x^4+\left (182+434 x+115 x^2+6 x^3\right ) \log (3 x)+\left (28+59 x+6 x^2\right ) \log ^2(3 x)+(1+2 x) \log ^3(3 x)\right )}{(x+\log (3 x))^3} \, dx\\ &=2 \int \frac {e^{4 x} x \left (-196-14 x+406 x^2+57 x^3+2 x^4+\left (182+434 x+115 x^2+6 x^3\right ) \log (3 x)+\left (28+59 x+6 x^2\right ) \log ^2(3 x)+(1+2 x) \log ^3(3 x)\right )}{(x+\log (3 x))^3} \, dx\\ &=2 \int \left (e^{4 x} x (1+2 x)-\frac {196 e^{4 x} x (1+x)}{(x+\log (3 x))^3}+\frac {14 e^{4 x} x (13+27 x)}{(x+\log (3 x))^2}+\frac {28 e^{4 x} x (1+2 x)}{x+\log (3 x)}\right ) \, dx\\ &=2 \int e^{4 x} x (1+2 x) \, dx+28 \int \frac {e^{4 x} x (13+27 x)}{(x+\log (3 x))^2} \, dx+56 \int \frac {e^{4 x} x (1+2 x)}{x+\log (3 x)} \, dx-392 \int \frac {e^{4 x} x (1+x)}{(x+\log (3 x))^3} \, dx\\ &=2 \int \left (e^{4 x} x+2 e^{4 x} x^2\right ) \, dx+28 \int \left (\frac {13 e^{4 x} x}{(x+\log (3 x))^2}+\frac {27 e^{4 x} x^2}{(x+\log (3 x))^2}\right ) \, dx+56 \int \left (\frac {e^{4 x} x}{x+\log (3 x)}+\frac {2 e^{4 x} x^2}{x+\log (3 x)}\right ) \, dx-392 \int \left (\frac {e^{4 x} x}{(x+\log (3 x))^3}+\frac {e^{4 x} x^2}{(x+\log (3 x))^3}\right ) \, dx\\ &=2 \int e^{4 x} x \, dx+4 \int e^{4 x} x^2 \, dx+56 \int \frac {e^{4 x} x}{x+\log (3 x)} \, dx+112 \int \frac {e^{4 x} x^2}{x+\log (3 x)} \, dx+364 \int \frac {e^{4 x} x}{(x+\log (3 x))^2} \, dx-392 \int \frac {e^{4 x} x}{(x+\log (3 x))^3} \, dx-392 \int \frac {e^{4 x} x^2}{(x+\log (3 x))^3} \, dx+756 \int \frac {e^{4 x} x^2}{(x+\log (3 x))^2} \, dx\\ &=\frac {1}{2} e^{4 x} x+e^{4 x} x^2-\frac {1}{2} \int e^{4 x} \, dx-2 \int e^{4 x} x \, dx+56 \int \frac {e^{4 x} x}{x+\log (3 x)} \, dx+112 \int \frac {e^{4 x} x^2}{x+\log (3 x)} \, dx+364 \int \frac {e^{4 x} x}{(x+\log (3 x))^2} \, dx-392 \int \frac {e^{4 x} x}{(x+\log (3 x))^3} \, dx-392 \int \frac {e^{4 x} x^2}{(x+\log (3 x))^3} \, dx+756 \int \frac {e^{4 x} x^2}{(x+\log (3 x))^2} \, dx\\ &=-\frac {e^{4 x}}{8}+e^{4 x} x^2+\frac {1}{2} \int e^{4 x} \, dx+56 \int \frac {e^{4 x} x}{x+\log (3 x)} \, dx+112 \int \frac {e^{4 x} x^2}{x+\log (3 x)} \, dx+364 \int \frac {e^{4 x} x}{(x+\log (3 x))^2} \, dx-392 \int \frac {e^{4 x} x}{(x+\log (3 x))^3} \, dx-392 \int \frac {e^{4 x} x^2}{(x+\log (3 x))^3} \, dx+756 \int \frac {e^{4 x} x^2}{(x+\log (3 x))^2} \, dx\\ &=e^{4 x} x^2+56 \int \frac {e^{4 x} x}{x+\log (3 x)} \, dx+112 \int \frac {e^{4 x} x^2}{x+\log (3 x)} \, dx+364 \int \frac {e^{4 x} x}{(x+\log (3 x))^2} \, dx-392 \int \frac {e^{4 x} x}{(x+\log (3 x))^3} \, dx-392 \int \frac {e^{4 x} x^2}{(x+\log (3 x))^3} \, dx+756 \int \frac {e^{4 x} x^2}{(x+\log (3 x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 26, normalized size = 1.24 \begin {gather*} \frac {e^{4 x} x^2 (14+x+\log (3 x))^2}{(x+\log (3 x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 73, normalized size = 3.48 \begin {gather*} \frac {x^{2} e^{\left (4 \, x\right )} \log \left (3 \, x\right )^{2} + 2 \, {\left (x^{3} + 14 \, x^{2}\right )} e^{\left (4 \, x\right )} \log \left (3 \, x\right ) + {\left (x^{4} + 28 \, x^{3} + 196 \, x^{2}\right )} e^{\left (4 \, x\right )}}{x^{2} + 2 \, x \log \left (3 \, x\right ) + \log \left (3 \, x\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 87, normalized size = 4.14 \begin {gather*} \frac {x^{4} e^{\left (4 \, x\right )} + 2 \, x^{3} e^{\left (4 \, x\right )} \log \left (3 \, x\right ) + x^{2} e^{\left (4 \, x\right )} \log \left (3 \, x\right )^{2} + 28 \, x^{3} e^{\left (4 \, x\right )} + 28 \, x^{2} e^{\left (4 \, x\right )} \log \left (3 \, x\right ) + 196 \, x^{2} e^{\left (4 \, x\right )}}{x^{2} + 2 \, x \log \left (3 \, x\right ) + \log \left (3 \, x\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 34, normalized size = 1.62
method | result | size |
risch | \(x^{2} {\mathrm e}^{4 x}+\frac {28 \left (x +\ln \left (3 x \right )+7\right ) x^{2} {\mathrm e}^{4 x}}{\left (x +\ln \left (3 x \right )\right )^{2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 83, normalized size = 3.95 \begin {gather*} \frac {{\left (x^{4} + 2 \, x^{3} {\left (\log \relax (3) + 14\right )} + x^{2} \log \relax (x)^{2} + {\left (\log \relax (3)^{2} + 28 \, \log \relax (3) + 196\right )} x^{2} + 2 \, {\left (x^{3} + x^{2} {\left (\log \relax (3) + 14\right )}\right )} \log \relax (x)\right )} e^{\left (4 \, x\right )}}{x^{2} + 2 \, x \log \relax (3) + \log \relax (3)^{2} + 2 \, {\left (x + \log \relax (3)\right )} \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.57, size = 434, normalized size = 20.67 \begin {gather*} \frac {{\mathrm {e}}^{4\,x}\,\left (224\,x^6+2129\,x^5+3727\,x^4+2439\,x^3+449\,x^2\right )}{x^3+3\,x^2+3\,x+1}-\frac {\frac {28\,x\,{\ln \left (3\,x\right )}^2\,\left (x\,{\mathrm {e}}^{4\,x}+2\,x^2\,{\mathrm {e}}^{4\,x}\right )}{x+1}-\frac {14\,x\,\left (14\,x\,{\mathrm {e}}^{4\,x}+x^2\,{\mathrm {e}}^{4\,x}-29\,x^3\,{\mathrm {e}}^{4\,x}-4\,x^4\,{\mathrm {e}}^{4\,x}\right )}{x+1}+\frac {14\,x\,\ln \left (3\,x\right )\,\left (13\,x\,{\mathrm {e}}^{4\,x}+31\,x^2\,{\mathrm {e}}^{4\,x}+8\,x^3\,{\mathrm {e}}^{4\,x}\right )}{x+1}}{x^2+2\,x\,\ln \left (3\,x\right )+{\ln \left (3\,x\right )}^2}-\frac {\frac {14\,x\,\left (93\,x^3\,{\mathrm {e}}^{4\,x}-29\,x^2\,{\mathrm {e}}^{4\,x}-15\,x\,{\mathrm {e}}^{4\,x}+227\,x^4\,{\mathrm {e}}^{4\,x}+148\,x^5\,{\mathrm {e}}^{4\,x}+16\,x^6\,{\mathrm {e}}^{4\,x}\right )}{{\left (x+1\right )}^3}+\frac {28\,x\,{\ln \left (3\,x\right )}^2\,\left (2\,x\,{\mathrm {e}}^{4\,x}+11\,x^2\,{\mathrm {e}}^{4\,x}+16\,x^3\,{\mathrm {e}}^{4\,x}+8\,x^4\,{\mathrm {e}}^{4\,x}\right )}{{\left (x+1\right )}^3}+\frac {28\,x\,\ln \left (3\,x\right )\,\left (15\,x\,{\mathrm {e}}^{4\,x}+85\,x^2\,{\mathrm {e}}^{4\,x}+139\,x^3\,{\mathrm {e}}^{4\,x}+90\,x^4\,{\mathrm {e}}^{4\,x}+16\,x^5\,{\mathrm {e}}^{4\,x}\right )}{{\left (x+1\right )}^3}}{x+\ln \left (3\,x\right )}+\ln \left (3\,x\right )\,{\mathrm {e}}^{4\,x}\,\left (\frac {224\,x^5+448\,x^4+308\,x^3+476\,x^2+700\,x+308}{x^3+3\,x^2+3\,x+1}-\frac {420\,x^2+700\,x+308}{x^3+3\,x^2+3\,x+1}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 66, normalized size = 3.14 \begin {gather*} \frac {\left (x^{4} + 2 x^{3} \log {\left (3 x \right )} + 28 x^{3} + x^{2} \log {\left (3 x \right )}^{2} + 28 x^{2} \log {\left (3 x \right )} + 196 x^{2}\right ) e^{4 x}}{x^{2} + 2 x \log {\left (3 x \right )} + \log {\left (3 x \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________