Optimal. Leaf size=25 \[ 2+x^2 (2-\log (5))+\log \left (x-\log \left (x^2+\log (\log (2))\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.50, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 5, number of rules used = 4, integrand size = 105, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {6, 6688, 6725, 6684} \begin {gather*} x^2 (2-\log (5))+\log \left (x-\log \left (x^2+\log (\log (2))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6684
Rule 6688
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x-x^2+x^4 (-4+2 \log (5))+\left (-1-4 x^2+2 x^2 \log (5)\right ) \log (\log (2))+\left (4 x^3-2 x^3 \log (5)+(4 x-2 x \log (5)) \log (\log (2))\right ) \log \left (x^2+\log (\log (2))\right )}{-x^3-x \log (\log (2))+\left (x^2+\log (\log (2))\right ) \log \left (x^2+\log (\log (2))\right )} \, dx\\ &=\int \frac {-2 x-2 x^4 (-2+\log (5))+\log (\log (2))+x^2 (1-2 (-2+\log (5)) \log (\log (2)))+2 x (-2+\log (5)) \left (x^2+\log (\log (2))\right ) \log \left (x^2+\log (\log (2))\right )}{\left (x^2+\log (\log (2))\right ) \left (x-\log \left (x^2+\log (\log (2))\right )\right )} \, dx\\ &=\int \left (-2 x (-2+\log (5))+\frac {-2 x+x^2+\log (\log (2))}{\left (x^2+\log (\log (2))\right ) \left (x-\log \left (x^2+\log (\log (2))\right )\right )}\right ) \, dx\\ &=x^2 (2-\log (5))+\int \frac {-2 x+x^2+\log (\log (2))}{\left (x^2+\log (\log (2))\right ) \left (x-\log \left (x^2+\log (\log (2))\right )\right )} \, dx\\ &=x^2 (2-\log (5))+\log \left (x-\log \left (x^2+\log (\log (2))\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 24, normalized size = 0.96 \begin {gather*} x^2 (2-\log (5))+\log \left (x-\log \left (x^2+\log (\log (2))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.18, size = 26, normalized size = 1.04 \begin {gather*} -x^{2} \log \relax (5) + 2 \, x^{2} + \log \left (-x + \log \left (x^{2} + \log \left (\log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 23, normalized size = 0.92 \begin {gather*} -x^{2} {\left (\log \relax (5) - 2\right )} + \log \left (x - \log \left (x^{2} + \log \left (\log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 25, normalized size = 1.00
method | result | size |
norman | \(\left (2-\ln \relax (5)\right ) x^{2}+\ln \left (-\ln \left (\ln \left (\ln \relax (2)\right )+x^{2}\right )+x \right )\) | \(25\) |
default | \(2 x^{2}+\ln \left (-\ln \left (\ln \left (\ln \relax (2)\right )+x^{2}\right )+x \right )-x^{2} \ln \relax (5)\) | \(27\) |
risch | \(-x^{2} \ln \relax (5)+2 x^{2}+\ln \left (-x +\ln \left (\ln \left (\ln \relax (2)\right )+x^{2}\right )\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 23, normalized size = 0.92 \begin {gather*} -x^{2} {\left (\log \relax (5) - 2\right )} + \log \left (-x + \log \left (x^{2} + \log \left (\log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.50, size = 23, normalized size = 0.92 \begin {gather*} \ln \left (\ln \left (x^2+\ln \left (\ln \relax (2)\right )\right )-x\right )-x^2\,\left (\ln \relax (5)-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 20, normalized size = 0.80 \begin {gather*} x^{2} \left (2 - \log {\relax (5 )}\right ) + \log {\left (- x + \log {\left (x^{2} + \log {\left (\log {\relax (2 )} \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________