3.80.95 \(\int \frac {4-2 e^{50} x-e^{50} \log (48)}{4 e^{50}} \, dx\)

Optimal. Leaf size=15 \[ \frac {x}{e^{50}}-\frac {1}{4} x (x+\log (48)) \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 24, normalized size of antiderivative = 1.60, number of steps used = 1, number of rules used = 1, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {9} \begin {gather*} -\frac {\left (-2 e^{50} x+4-e^{50} \log (48)\right )^2}{16 e^{100}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(4 - 2*E^50*x - E^50*Log[48])/(4*E^50),x]

[Out]

-1/16*(4 - 2*E^50*x - E^50*Log[48])^2/E^100

Rule 9

Int[(a_)*((b_) + (c_.)*(x_)), x_Symbol] :> Simp[(a*(b + c*x)^2)/(2*c), x] /; FreeQ[{a, b, c}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-\frac {\left (4-2 e^{50} x-e^{50} \log (48)\right )^2}{16 e^{100}}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 20, normalized size = 1.33 \begin {gather*} \frac {x}{e^{50}}-\frac {x^2}{4}-\frac {1}{4} x \log (48) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(4 - 2*E^50*x - E^50*Log[48])/(4*E^50),x]

[Out]

x/E^50 - x^2/4 - (x*Log[48])/4

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 20, normalized size = 1.33 \begin {gather*} -\frac {1}{4} \, {\left (x^{2} e^{50} + x e^{50} \log \left (48\right ) - 4 \, x\right )} e^{\left (-50\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-exp(25)^2*log(48)-2*x*exp(25)^2+4)/exp(25)^2,x, algorithm="fricas")

[Out]

-1/4*(x^2*e^50 + x*e^50*log(48) - 4*x)*e^(-50)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 20, normalized size = 1.33 \begin {gather*} -\frac {1}{4} \, {\left (x^{2} e^{50} + x e^{50} \log \left (48\right ) - 4 \, x\right )} e^{\left (-50\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-exp(25)^2*log(48)-2*x*exp(25)^2+4)/exp(25)^2,x, algorithm="giac")

[Out]

-1/4*(x^2*e^50 + x*e^50*log(48) - 4*x)*e^(-50)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 21, normalized size = 1.40




method result size



risch \(-x \ln \relax (2)-\frac {x \ln \relax (3)}{4}-\frac {x^{2}}{4}+x \,{\mathrm e}^{-50}\) \(21\)
gosper \(-\frac {x \left ({\mathrm e}^{50} \ln \left (48\right )+x \,{\mathrm e}^{50}-4\right ) {\mathrm e}^{-50}}{4}\) \(23\)
default \(\frac {{\mathrm e}^{-50} \left (-{\mathrm e}^{50} \ln \left (48\right ) x -x^{2} {\mathrm e}^{50}+4 x \right )}{4}\) \(29\)
norman \(\left (-\frac {x^{2} {\mathrm e}^{25}}{4}-\frac {{\mathrm e}^{-25} \left ({\mathrm e}^{50} \ln \left (48\right )-4\right ) x}{4}\right ) {\mathrm e}^{-25}\) \(30\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*(-exp(25)^2*ln(48)-2*x*exp(25)^2+4)/exp(25)^2,x,method=_RETURNVERBOSE)

[Out]

-x*ln(2)-1/4*x*ln(3)-1/4*x^2+x*exp(-50)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 20, normalized size = 1.33 \begin {gather*} -\frac {1}{4} \, {\left (x^{2} e^{50} + x e^{50} \log \left (48\right ) - 4 \, x\right )} e^{\left (-50\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-exp(25)^2*log(48)-2*x*exp(25)^2+4)/exp(25)^2,x, algorithm="maxima")

[Out]

-1/4*(x^2*e^50 + x*e^50*log(48) - 4*x)*e^(-50)

________________________________________________________________________________________

mupad [B]  time = 0.30, size = 19, normalized size = 1.27 \begin {gather*} -{\mathrm {e}}^{-100}\,{\left (\frac {{\mathrm {e}}^{50}\,\ln \left (48\right )}{4}+\frac {x\,{\mathrm {e}}^{50}}{2}-1\right )}^2 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(-50)*((exp(50)*log(48))/4 + (x*exp(50))/2 - 1),x)

[Out]

-exp(-100)*((exp(50)*log(48))/4 + (x*exp(50))/2 - 1)^2

________________________________________________________________________________________

sympy [A]  time = 0.06, size = 19, normalized size = 1.27 \begin {gather*} - \frac {x^{2}}{4} + \frac {x \left (- e^{50} \log {\left (48 \right )} + 4\right )}{4 e^{50}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-exp(25)**2*ln(48)-2*x*exp(25)**2+4)/exp(25)**2,x)

[Out]

-x**2/4 + x*(-exp(50)*log(48) + 4)*exp(-50)/4

________________________________________________________________________________________