Optimal. Leaf size=15 \[ \frac {x}{e^{50}}-\frac {1}{4} x (x+\log (48)) \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 24, normalized size of antiderivative = 1.60, number of steps used = 1, number of rules used = 1, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {9} \begin {gather*} -\frac {\left (-2 e^{50} x+4-e^{50} \log (48)\right )^2}{16 e^{100}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {\left (4-2 e^{50} x-e^{50} \log (48)\right )^2}{16 e^{100}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 20, normalized size = 1.33 \begin {gather*} \frac {x}{e^{50}}-\frac {x^2}{4}-\frac {1}{4} x \log (48) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 20, normalized size = 1.33 \begin {gather*} -\frac {1}{4} \, {\left (x^{2} e^{50} + x e^{50} \log \left (48\right ) - 4 \, x\right )} e^{\left (-50\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 20, normalized size = 1.33 \begin {gather*} -\frac {1}{4} \, {\left (x^{2} e^{50} + x e^{50} \log \left (48\right ) - 4 \, x\right )} e^{\left (-50\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 1.40
method | result | size |
risch | \(-x \ln \relax (2)-\frac {x \ln \relax (3)}{4}-\frac {x^{2}}{4}+x \,{\mathrm e}^{-50}\) | \(21\) |
gosper | \(-\frac {x \left ({\mathrm e}^{50} \ln \left (48\right )+x \,{\mathrm e}^{50}-4\right ) {\mathrm e}^{-50}}{4}\) | \(23\) |
default | \(\frac {{\mathrm e}^{-50} \left (-{\mathrm e}^{50} \ln \left (48\right ) x -x^{2} {\mathrm e}^{50}+4 x \right )}{4}\) | \(29\) |
norman | \(\left (-\frac {x^{2} {\mathrm e}^{25}}{4}-\frac {{\mathrm e}^{-25} \left ({\mathrm e}^{50} \ln \left (48\right )-4\right ) x}{4}\right ) {\mathrm e}^{-25}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 1.33 \begin {gather*} -\frac {1}{4} \, {\left (x^{2} e^{50} + x e^{50} \log \left (48\right ) - 4 \, x\right )} e^{\left (-50\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 19, normalized size = 1.27 \begin {gather*} -{\mathrm {e}}^{-100}\,{\left (\frac {{\mathrm {e}}^{50}\,\ln \left (48\right )}{4}+\frac {x\,{\mathrm {e}}^{50}}{2}-1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 19, normalized size = 1.27 \begin {gather*} - \frac {x^{2}}{4} + \frac {x \left (- e^{50} \log {\left (48 \right )} + 4\right )}{4 e^{50}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________