Optimal. Leaf size=25 \[ -2+x^3+\frac {5}{\left (3+e^x\right ) x (64+x+\log (\log (x)))} \]
________________________________________________________________________________________
Rubi [F] time = 5.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-15-5 e^x+\left (-960-30 x+110592 x^4+3456 x^5+27 x^6+e^{2 x} \left (12288 x^4+384 x^5+3 x^6\right )+e^x \left (-320-330 x-5 x^2+73728 x^4+2304 x^5+18 x^6\right )\right ) \log (x)+\left (-15+3456 x^4+54 x^5+e^{2 x} \left (384 x^4+6 x^5\right )+e^x \left (-5-5 x+2304 x^4+36 x^5\right )\right ) \log (x) \log (\log (x))+\left (27 x^4+18 e^x x^4+3 e^{2 x} x^4\right ) \log (x) \log ^2(\log (x))}{\left (36864 x^2+1152 x^3+9 x^4+e^{2 x} \left (4096 x^2+128 x^3+x^4\right )+e^x \left (24576 x^2+768 x^3+6 x^4\right )\right ) \log (x)+\left (1152 x^2+18 x^3+e^{2 x} \left (128 x^2+2 x^3\right )+e^x \left (768 x^2+12 x^3\right )\right ) \log (x) \log (\log (x))+\left (9 x^2+6 e^x x^2+e^{2 x} x^2\right ) \log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 \left (3+e^x\right )+\log (x) \left (3 e^{2 x} x^4 (64+x)^2+3 \left (-320-10 x+36864 x^4+1152 x^5+9 x^6\right )+e^x \left (-320-330 x-5 x^2+73728 x^4+2304 x^5+18 x^6\right )+\left (-15+3456 x^4+54 x^5+6 e^{2 x} x^4 (64+x)+e^x \left (-5-5 x+2304 x^4+36 x^5\right )\right ) \log (\log (x))+3 \left (3+e^x\right )^2 x^4 \log ^2(\log (x))\right )}{\left (3+e^x\right )^2 x^2 \log (x) (64+x+\log (\log (x)))^2} \, dx\\ &=\int \left (3 x^2+\frac {15}{\left (3+e^x\right )^2 x (64+x+\log (\log (x)))}-\frac {5 \left (1+64 \log (x)+66 x \log (x)+x^2 \log (x)+\log (x) \log (\log (x))+x \log (x) \log (\log (x))\right )}{\left (3+e^x\right ) x^2 \log (x) (64+x+\log (\log (x)))^2}\right ) \, dx\\ &=x^3-5 \int \frac {1+64 \log (x)+66 x \log (x)+x^2 \log (x)+\log (x) \log (\log (x))+x \log (x) \log (\log (x))}{\left (3+e^x\right ) x^2 \log (x) (64+x+\log (\log (x)))^2} \, dx+15 \int \frac {1}{\left (3+e^x\right )^2 x (64+x+\log (\log (x)))} \, dx\\ &=x^3-5 \int \frac {1+\log (x) \left (64+66 x+x^2+(1+x) \log (\log (x))\right )}{\left (3+e^x\right ) x^2 \log (x) (64+x+\log (\log (x)))^2} \, dx+15 \int \frac {1}{\left (3+e^x\right )^2 x (64+x+\log (\log (x)))} \, dx\\ &=x^3-5 \int \left (\frac {1}{\left (3+e^x\right ) (64+x+\log (\log (x)))^2}+\frac {64}{\left (3+e^x\right ) x^2 (64+x+\log (\log (x)))^2}+\frac {66}{\left (3+e^x\right ) x (64+x+\log (\log (x)))^2}+\frac {1}{\left (3+e^x\right ) x^2 \log (x) (64+x+\log (\log (x)))^2}+\frac {\log (\log (x))}{\left (3+e^x\right ) x^2 (64+x+\log (\log (x)))^2}+\frac {\log (\log (x))}{\left (3+e^x\right ) x (64+x+\log (\log (x)))^2}\right ) \, dx+15 \int \frac {1}{\left (3+e^x\right )^2 x (64+x+\log (\log (x)))} \, dx\\ &=x^3-5 \int \frac {1}{\left (3+e^x\right ) (64+x+\log (\log (x)))^2} \, dx-5 \int \frac {1}{\left (3+e^x\right ) x^2 \log (x) (64+x+\log (\log (x)))^2} \, dx-5 \int \frac {\log (\log (x))}{\left (3+e^x\right ) x^2 (64+x+\log (\log (x)))^2} \, dx-5 \int \frac {\log (\log (x))}{\left (3+e^x\right ) x (64+x+\log (\log (x)))^2} \, dx+15 \int \frac {1}{\left (3+e^x\right )^2 x (64+x+\log (\log (x)))} \, dx-320 \int \frac {1}{\left (3+e^x\right ) x^2 (64+x+\log (\log (x)))^2} \, dx-330 \int \frac {1}{\left (3+e^x\right ) x (64+x+\log (\log (x)))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 24, normalized size = 0.96 \begin {gather*} x^3+\frac {5}{\left (3+e^x\right ) x (64+x+\log (\log (x)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 74, normalized size = 2.96 \begin {gather*} \frac {3 \, x^{5} + 192 \, x^{4} + {\left (x^{5} + 64 \, x^{4}\right )} e^{x} + {\left (x^{4} e^{x} + 3 \, x^{4}\right )} \log \left (\log \relax (x)\right ) + 5}{3 \, x^{2} + {\left (x^{2} + 64 \, x\right )} e^{x} + {\left (x e^{x} + 3 \, x\right )} \log \left (\log \relax (x)\right ) + 192 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 78, normalized size = 3.12 \begin {gather*} \frac {x^{5} e^{x} + x^{4} e^{x} \log \left (\log \relax (x)\right ) + 3 \, x^{5} + 64 \, x^{4} e^{x} + 3 \, x^{4} \log \left (\log \relax (x)\right ) + 192 \, x^{4} + 5}{x^{2} e^{x} + x e^{x} \log \left (\log \relax (x)\right ) + 3 \, x^{2} + 64 \, x e^{x} + 3 \, x \log \left (\log \relax (x)\right ) + 192 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 0.96
method | result | size |
risch | \(x^{3}+\frac {5}{x \left (\ln \left (\ln \relax (x )\right )+64+x \right ) \left (3+{\mathrm e}^{x}\right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 74, normalized size = 2.96 \begin {gather*} \frac {3 \, x^{5} + 192 \, x^{4} + {\left (x^{5} + 64 \, x^{4}\right )} e^{x} + {\left (x^{4} e^{x} + 3 \, x^{4}\right )} \log \left (\log \relax (x)\right ) + 5}{3 \, x^{2} + {\left (x^{2} + 64 \, x\right )} e^{x} + {\left (x e^{x} + 3 \, x\right )} \log \left (\log \relax (x)\right ) + 192 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.03, size = 191, normalized size = 7.64 \begin {gather*} \frac {15}{x\,\left ({\mathrm {e}}^{2\,x}+6\,{\mathrm {e}}^x+9\right )}+x^3+\frac {\frac {5\,\left ({\mathrm {e}}^x+192\,\ln \relax (x)+64\,{\mathrm {e}}^x\,\ln \relax (x)+6\,x\,\ln \relax (x)+66\,x\,{\mathrm {e}}^x\,\ln \relax (x)+x^2\,{\mathrm {e}}^x\,\ln \relax (x)+3\right )}{x\,\left (x\,\ln \relax (x)+1\right )\,{\left ({\mathrm {e}}^x+3\right )}^2}+\frac {5\,\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left ({\mathrm {e}}^x+x\,{\mathrm {e}}^x+3\right )}{x\,\left (x\,\ln \relax (x)+1\right )\,{\left ({\mathrm {e}}^x+3\right )}^2}}{x+\ln \left (\ln \relax (x)\right )+64}-\frac {5\,\left (x^2+x\right )}{x^3\,\left ({\mathrm {e}}^x+3\right )}+\frac {5\,\left (9\,x-{\mathrm {e}}^{2\,x}-6\,{\mathrm {e}}^x+3\,x^2\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^{2\,x}+3\,x\,{\mathrm {e}}^x-9\right )}{x^2\,\left (x\,\ln \relax (x)+1\right )\,{\left ({\mathrm {e}}^x+3\right )}^3\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 37, normalized size = 1.48 \begin {gather*} x^{3} + \frac {5}{3 x^{2} + 3 x \log {\left (\log {\relax (x )} \right )} + 192 x + \left (x^{2} + x \log {\left (\log {\relax (x )} \right )} + 64 x\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________