Optimal. Leaf size=25 \[ -\frac {1}{x}+x-\frac {1}{25} x \left (-\frac {e^x}{x}+\log (x)\right )^4 \]
________________________________________________________________________________________
Rubi [B] time = 0.31, antiderivative size = 69, normalized size of antiderivative = 2.76, number of steps used = 18, number of rules used = 7, integrand size = 125, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {12, 14, 2197, 2202, 2288, 2296, 2295} \begin {gather*} -\frac {e^{4 x}}{25 x^3}+\frac {4 e^{3 x} \log (x)}{25 x^2}+x-\frac {1}{x}-\frac {1}{25} x \log ^4(x)+\frac {4}{25} e^x \log ^3(x)-\frac {6 e^{2 x} \log ^2(x)}{25 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rule 2202
Rule 2288
Rule 2295
Rule 2296
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{x^4} \, dx\\ &=\frac {1}{25} \int \left (-\frac {e^{4 x} (-3+4 x)}{x^4}+\frac {4 e^x \log ^2(x) (3+x \log (x))}{x}-\frac {6 e^{2 x} \log (x) (2-\log (x)+2 x \log (x))}{x^2}+\frac {4 e^{3 x} (1-2 \log (x)+3 x \log (x))}{x^3}+\frac {25+25 x^2-4 x^2 \log ^3(x)-x^2 \log ^4(x)}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{25} \int \frac {e^{4 x} (-3+4 x)}{x^4} \, dx\right )+\frac {1}{25} \int \frac {25+25 x^2-4 x^2 \log ^3(x)-x^2 \log ^4(x)}{x^2} \, dx+\frac {4}{25} \int \frac {e^x \log ^2(x) (3+x \log (x))}{x} \, dx+\frac {4}{25} \int \frac {e^{3 x} (1-2 \log (x)+3 x \log (x))}{x^3} \, dx-\frac {6}{25} \int \frac {e^{2 x} \log (x) (2-\log (x)+2 x \log (x))}{x^2} \, dx\\ &=-\frac {e^{4 x}}{25 x^3}+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)+\frac {1}{25} \int \left (\frac {25 \left (1+x^2\right )}{x^2}-4 \log ^3(x)-\log ^4(x)\right ) \, dx\\ &=-\frac {e^{4 x}}{25 x^3}+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)-\frac {1}{25} \int \log ^4(x) \, dx-\frac {4}{25} \int \log ^3(x) \, dx+\int \frac {1+x^2}{x^2} \, dx\\ &=-\frac {e^{4 x}}{25 x^3}+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)-\frac {4}{25} x \log ^3(x)-\frac {1}{25} x \log ^4(x)+\frac {4}{25} \int \log ^3(x) \, dx+\frac {12}{25} \int \log ^2(x) \, dx+\int \left (1+\frac {1}{x^2}\right ) \, dx\\ &=-\frac {e^{4 x}}{25 x^3}-\frac {1}{x}+x+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {12}{25} x \log ^2(x)+\frac {4}{25} e^x \log ^3(x)-\frac {1}{25} x \log ^4(x)-\frac {12}{25} \int \log ^2(x) \, dx-\frac {24}{25} \int \log (x) \, dx\\ &=-\frac {e^{4 x}}{25 x^3}-\frac {1}{x}+\frac {49 x}{25}+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {24}{25} x \log (x)-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)-\frac {1}{25} x \log ^4(x)+\frac {24}{25} \int \log (x) \, dx\\ &=-\frac {e^{4 x}}{25 x^3}-\frac {1}{x}+x+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)-\frac {1}{25} x \log ^4(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 65, normalized size = 2.60 \begin {gather*} \frac {1}{25} \left (-\frac {e^{4 x}}{x^3}-\frac {25}{x}+25 x+\frac {4 e^{3 x} \log (x)}{x^2}-\frac {6 e^{2 x} \log ^2(x)}{x}+4 e^x \log ^3(x)-x \log ^4(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 61, normalized size = 2.44 \begin {gather*} -\frac {x^{4} \log \relax (x)^{4} - 4 \, x^{3} e^{x} \log \relax (x)^{3} + 6 \, x^{2} e^{\left (2 \, x\right )} \log \relax (x)^{2} - 25 \, x^{4} - 4 \, x e^{\left (3 \, x\right )} \log \relax (x) + 25 \, x^{2} + e^{\left (4 \, x\right )}}{25 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 61, normalized size = 2.44 \begin {gather*} -\frac {x^{4} \log \relax (x)^{4} - 4 \, x^{3} e^{x} \log \relax (x)^{3} + 6 \, x^{2} e^{\left (2 \, x\right )} \log \relax (x)^{2} - 25 \, x^{4} - 4 \, x e^{\left (3 \, x\right )} \log \relax (x) + 25 \, x^{2} + e^{\left (4 \, x\right )}}{25 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 56, normalized size = 2.24
method | result | size |
default | \(\frac {4 \,{\mathrm e}^{x} \ln \relax (x )^{3}}{25}+\frac {4 \ln \relax (x ) {\mathrm e}^{3 x}}{25 x^{2}}-\frac {6 \ln \relax (x )^{2} {\mathrm e}^{2 x}}{25 x}-\frac {x \ln \relax (x )^{4}}{25}+x -\frac {1}{x}-\frac {{\mathrm e}^{4 x}}{25 x^{3}}\) | \(56\) |
risch | \(-\frac {x \ln \relax (x )^{4}}{25}+\frac {4 \,{\mathrm e}^{x} \ln \relax (x )^{3}}{25}-\frac {6 \ln \relax (x )^{2} {\mathrm e}^{2 x}}{25 x}+\frac {4 \ln \relax (x ) {\mathrm e}^{3 x}}{25 x^{2}}+\frac {25 x^{4}-{\mathrm e}^{4 x}-25 x^{2}}{25 x^{3}}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x - \frac {x^{3} \log \relax (x)^{4} - 4 \, x^{2} e^{x} \log \relax (x)^{3} + 6 \, x e^{\left (2 \, x\right )} \log \relax (x)^{2} - 4 \, e^{\left (3 \, x\right )} \log \relax (x)}{25 \, x^{2}} - \frac {1}{x} - \frac {36}{25} \, \Gamma \left (-2, -3 \, x\right ) + \frac {64}{25} \, \Gamma \left (-2, -4 \, x\right ) + \frac {192}{25} \, \Gamma \left (-3, -4 \, x\right ) - \frac {4}{25} \, \int \frac {e^{\left (3 \, x\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int -\frac {\frac {4\,x\,{\mathrm {e}}^{3\,x}}{25}-\frac {\ln \relax (x)\,\left ({\mathrm {e}}^{3\,x}\,\left (8\,x-12\,x^2\right )+12\,x^2\,{\mathrm {e}}^{2\,x}\right )}{25}+\frac {{\ln \relax (x)}^3\,\left (4\,x^4\,{\mathrm {e}}^x-4\,x^4\right )}{25}-\frac {x^4\,{\ln \relax (x)}^4}{25}+\frac {{\ln \relax (x)}^2\,\left (12\,x^3\,{\mathrm {e}}^x+{\mathrm {e}}^{2\,x}\,\left (6\,x^2-12\,x^3\right )\right )}{25}-\frac {{\mathrm {e}}^{4\,x}\,\left (4\,x-3\right )}{25}+x^2+x^4}{x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.50, size = 70, normalized size = 2.80 \begin {gather*} - \frac {x \log {\relax (x )}^{4}}{25} + x - \frac {1}{x} + \frac {62500 x^{6} e^{x} \log {\relax (x )}^{3} - 93750 x^{5} e^{2 x} \log {\relax (x )}^{2} + 62500 x^{4} e^{3 x} \log {\relax (x )} - 15625 x^{3} e^{4 x}}{390625 x^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________