Optimal. Leaf size=24 \[ e^{1+x+\frac {4}{(1+x) \left (\frac {2}{x}+\log \left (\frac {1}{x}\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 5.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2+8 x+2 x^2+\left (x+2 x^2+x^3\right ) \log \left (\frac {1}{x}\right )}{2+2 x+\left (x+x^2\right ) \log \left (\frac {1}{x}\right )}\right ) \left (12+12 x+8 x^2+\left (4 x+4 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )\right )}{4+8 x+4 x^2+\left (4 x+8 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}} \left (4 \left (3+3 x+2 x^2\right )+4 x \left (1+x+x^2\right ) \log \left (\frac {1}{x}\right )+x^2 (1+x)^2 \log ^2\left (\frac {1}{x}\right )\right )}{(1+x)^2 \left (2+x \log \left (\frac {1}{x}\right )\right )^2} \, dx\\ &=\int \left (\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}}+\frac {4 \exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}} (2+x)}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )^2}-\frac {4 \exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{-1+\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}}}{(1+x)^2 \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \, dx\\ &=4 \int \frac {\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}} (2+x)}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )^2} \, dx-4 \int \frac {\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{-1+\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}}}{(1+x)^2 \left (2+x \log \left (\frac {1}{x}\right )\right )} \, dx+\int \exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}} \, dx\\ &=-\left (4 \int \frac {\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{-1+\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}}}{(1+x)^2 \left (2+x \log \left (\frac {1}{x}\right )\right )} \, dx\right )+4 \int \left (\frac {\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}}}{\left (2+x \log \left (\frac {1}{x}\right )\right )^2}+\frac {\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}}}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )^2}\right ) \, dx+\int \exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}} \, dx\\ &=4 \int \frac {\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}}}{\left (2+x \log \left (\frac {1}{x}\right )\right )^2} \, dx+4 \int \frac {\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}}}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )^2} \, dx-4 \int \frac {\exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{-1+\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}}}{(1+x)^2 \left (2+x \log \left (\frac {1}{x}\right )\right )} \, dx+\int \exp \left (\frac {2 \left (1+4 x+x^2\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}\right ) \left (\frac {1}{x}\right )^{\frac {x (1+x)}{2+x \log \left (\frac {1}{x}\right )}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 40, normalized size = 1.67 \begin {gather*} e^{\frac {2 \left (1+4 x+x^2\right )+x (1+x)^2 \log \left (\frac {1}{x}\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 44, normalized size = 1.83 \begin {gather*} e^{\left (\frac {2 \, x^{2} + {\left (x^{3} + 2 \, x^{2} + x\right )} \log \left (\frac {1}{x}\right ) + 8 \, x + 2}{{\left (x^{2} + x\right )} \log \left (\frac {1}{x}\right ) + 2 \, x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.41, size = 131, normalized size = 5.46 \begin {gather*} e^{\left (\frac {x^{3} \log \relax (x)}{x^{2} \log \relax (x) + x \log \relax (x) - 2 \, x - 2} + \frac {2 \, x^{2} \log \relax (x)}{x^{2} \log \relax (x) + x \log \relax (x) - 2 \, x - 2} - \frac {2 \, x^{2}}{x^{2} \log \relax (x) + x \log \relax (x) - 2 \, x - 2} + \frac {x \log \relax (x)}{x^{2} \log \relax (x) + x \log \relax (x) - 2 \, x - 2} - \frac {8 \, x}{x^{2} \log \relax (x) + x \log \relax (x) - 2 \, x - 2} - \frac {2}{x^{2} \log \relax (x) + x \log \relax (x) - 2 \, x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 51, normalized size = 2.12
method | result | size |
risch | \({\mathrm e}^{\frac {x^{3} \ln \left (\frac {1}{x}\right )+2 x^{2} \ln \left (\frac {1}{x}\right )+x \ln \left (\frac {1}{x}\right )+2 x^{2}+8 x +2}{\left (x +1\right ) \left (x \ln \left (\frac {1}{x}\right )+2\right )}}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 38, normalized size = 1.58 \begin {gather*} e^{\left (x - \frac {8}{x \log \relax (x)^{2} + 2 \, {\left (x - 1\right )} \log \relax (x) - 4} - \frac {4}{{\left (x + 1\right )} \log \relax (x) + 2 \, x + 2} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.46, size = 97, normalized size = 4.04 \begin {gather*} {\mathrm {e}}^{\frac {8\,x}{2\,x+x\,\ln \left (\frac {1}{x}\right )+x^2\,\ln \left (\frac {1}{x}\right )+2}}\,{\mathrm {e}}^{\frac {2\,x^2}{2\,x+x\,\ln \left (\frac {1}{x}\right )+x^2\,\ln \left (\frac {1}{x}\right )+2}}\,{\mathrm {e}}^{\frac {2}{2\,x+x\,\ln \left (\frac {1}{x}\right )+x^2\,\ln \left (\frac {1}{x}\right )+2}}\,{\left (\frac {1}{x}\right )}^{\frac {x^2+x}{x\,\ln \left (\frac {1}{x}\right )+2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.68, size = 41, normalized size = 1.71 \begin {gather*} e^{\frac {2 x^{2} + 8 x + \left (x^{3} + 2 x^{2} + x\right ) \log {\left (\frac {1}{x} \right )} + 2}{2 x + \left (x^{2} + x\right ) \log {\left (\frac {1}{x} \right )} + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________