Optimal. Leaf size=24 \[ e^2-2 x+\frac {-1-3 x+x (-x+\log (2))}{e^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 23, normalized size of antiderivative = 0.96, number of steps used = 1, number of rules used = 1, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {9} \begin {gather*} -\frac {\left (2 x+2 e^3+3-\log (2)\right )^2}{4 e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {\left (3+2 e^3+2 x-\log (2)\right )^2}{4 e^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 23, normalized size = 0.96 \begin {gather*} \frac {-3 x-2 e^3 x-x^2+x \log (2)}{e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 21, normalized size = 0.88 \begin {gather*} -{\left (x^{2} + 2 \, x e^{3} - x \log \relax (2) + 3 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 21, normalized size = 0.88 \begin {gather*} -{\left (x^{2} + 2 \, x e^{3} - x \log \relax (2) + 3 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.79
method | result | size |
gosper | \(-x \left (x +2 \,{\mathrm e}^{3}-\ln \relax (2)+3\right ) {\mathrm e}^{-3}\) | \(19\) |
risch | \({\mathrm e}^{-3} \ln \relax (2) x -2 x -x^{2} {\mathrm e}^{-3}-3 x \,{\mathrm e}^{-3}\) | \(23\) |
default | \({\mathrm e}^{-3} \left (x \ln \relax (2)-2 x \,{\mathrm e}^{3}-x^{2}-3 x \right )\) | \(24\) |
norman | \(-x^{2} {\mathrm e}^{-3}-{\mathrm e}^{-3} \left (2 \,{\mathrm e}^{3}-\ln \relax (2)+3\right ) x\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 21, normalized size = 0.88 \begin {gather*} -{\left (x^{2} + 2 \, x e^{3} - x \log \relax (2) + 3 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 19, normalized size = 0.79 \begin {gather*} -\frac {{\mathrm {e}}^{-3}\,{\left (2\,x+2\,{\mathrm {e}}^3-\ln \relax (2)+3\right )}^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 20, normalized size = 0.83 \begin {gather*} - \frac {x^{2}}{e^{3}} + \frac {x \left (- 2 e^{3} - 3 + \log {\relax (2 )}\right )}{e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________