Optimal. Leaf size=21 \[ e^{-1+e^{3+\frac {4}{\log (\log (3+x+2 e x))}}} \]
________________________________________________________________________________________
Rubi [A] time = 1.48, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 92, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.076, Rules used = {6, 12, 2444, 6688, 6715, 2282, 2194} \begin {gather*} e^{e^{\frac {4}{\log (\log (2 e x+x+3))}+3}-1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2194
Rule 2282
Rule 2444
Rule 6688
Rule 6715
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-4-8 e) \exp \left (-1+\exp \left (\frac {4+3 \log (\log (3+x+2 e x))}{\log (\log (3+x+2 e x))}\right )+\frac {4+3 \log (\log (3+x+2 e x))}{\log (\log (3+x+2 e x))}\right )}{(3+(1+2 e) x) \log (3+x+2 e x) \log ^2(\log (3+x+2 e x))} \, dx\\ &=-\left ((4 (1+2 e)) \int \frac {\exp \left (-1+\exp \left (\frac {4+3 \log (\log (3+x+2 e x))}{\log (\log (3+x+2 e x))}\right )+\frac {4+3 \log (\log (3+x+2 e x))}{\log (\log (3+x+2 e x))}\right )}{(3+(1+2 e) x) \log (3+x+2 e x) \log ^2(\log (3+x+2 e x))} \, dx\right )\\ &=-\left ((4 (1+2 e)) \int \frac {\exp \left (-1+\exp \left (\frac {4+3 \log (\log (3+x+2 e x))}{\log (\log (3+x+2 e x))}\right )+\frac {4+3 \log (\log (3+x+2 e x))}{\log (\log (3+x+2 e x))}\right )}{(3+(1+2 e) x) \log (3+(1+2 e) x) \log ^2(\log (3+x+2 e x))} \, dx\right )\\ &=-\left ((4 (1+2 e)) \int \frac {\exp \left (2+e^{3+\frac {4}{\log (\log (3+x+2 e x))}}+\frac {4}{\log (\log (3+x+2 e x))}\right )}{(3+(1+2 e) x) \log (3+(1+2 e) x) \log ^2(\log (3+(1+2 e) x))} \, dx\right )\\ &=-\left (4 \operatorname {Subst}\left (\int \frac {e^{2+e^{3+\frac {4}{\log (\log (x))}}+\frac {4}{\log (\log (x))}}}{x \log (x) \log ^2(\log (x))} \, dx,x,3+(1+2 e) x\right )\right )\\ &=-\left (4 \operatorname {Subst}\left (\int \frac {e^{2+e^{3+\frac {4}{\log (x)}}+\frac {4}{\log (x)}}}{x \log ^2(x)} \, dx,x,\log (3+x+2 e x)\right )\right )\\ &=-\left (4 \operatorname {Subst}\left (\int \frac {e^{2+e^{3+\frac {4}{x}}+\frac {4}{x}}}{x^2} \, dx,x,\log (\log (3+x+2 e x))\right )\right )\\ &=4 \operatorname {Subst}\left (\int e^{2+e^{3+4 x}+4 x} \, dx,x,\frac {1}{\log (\log (3+x+2 e x))}\right )\\ &=\operatorname {Subst}\left (\int e^{2+e^3 x} \, dx,x,e^{\frac {4}{\log (\log (3+x+2 e x))}}\right )\\ &=e^{-1+e^{3+\frac {4}{\log (\log (3+x+2 e x))}}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 21, normalized size = 1.00 \begin {gather*} e^{-1+e^{3+\frac {4}{\log (\log (3+x+2 e x))}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.90, size = 96, normalized size = 4.57 \begin {gather*} e^{\left (\frac {e^{\left (\frac {3 \, \log \left (\log \left (2 \, x e + x + 3\right )\right ) + 4}{\log \left (\log \left (2 \, x e + x + 3\right )\right )}\right )} \log \left (\log \left (2 \, x e + x + 3\right )\right ) + 2 \, \log \left (\log \left (2 \, x e + x + 3\right )\right ) + 4}{\log \left (\log \left (2 \, x e + x + 3\right )\right )} - \frac {3 \, \log \left (\log \left (2 \, x e + x + 3\right )\right ) + 4}{\log \left (\log \left (2 \, x e + x + 3\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 38, normalized size = 1.81
method | result | size |
derivativedivides | \(-\frac {\left (-2 \,{\mathrm e}-1\right ) {\mathrm e}^{{\mathrm e}^{\frac {4}{\ln \left (\ln \left (2 x \,{\mathrm e}+3+x \right )\right )}} {\mathrm e}^{3}} {\mathrm e}^{-1}}{2 \,{\mathrm e}+1}\) | \(38\) |
default | \(-\frac {\left (-8 \,{\mathrm e}-4\right ) {\mathrm e}^{{\mathrm e}^{\frac {4}{\ln \left (\ln \left (2 x \,{\mathrm e}+3+x \right )\right )}} {\mathrm e}^{3}} {\mathrm e}^{-1}}{4 \left (2 \,{\mathrm e}+1\right )}\) | \(38\) |
risch | \(\frac {2 \,{\mathrm e}^{{\mathrm e}^{\frac {3 \ln \left (\ln \left (2 x \,{\mathrm e}+3+x \right )\right )+4}{\ln \left (\ln \left (2 x \,{\mathrm e}+3+x \right )\right )}}-1} {\mathrm e}}{2 \,{\mathrm e}+1}+\frac {{\mathrm e}^{{\mathrm e}^{\frac {3 \ln \left (\ln \left (2 x \,{\mathrm e}+3+x \right )\right )+4}{\ln \left (\ln \left (2 x \,{\mathrm e}+3+x \right )\right )}}-1}}{2 \,{\mathrm e}+1}\) | \(85\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 0.95 \begin {gather*} e^{\left (e^{\left (\frac {4}{\log \left (\log \left (2 \, x e + x + 3\right )\right )} + 3\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.29, size = 22, normalized size = 1.05 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{\frac {4}{\ln \left (\ln \left (x+2\,x\,\mathrm {e}+3\right )\right )}}\,{\mathrm {e}}^3}\,{\mathrm {e}}^{-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.54, size = 34, normalized size = 1.62 \begin {gather*} e^{e^{\frac {3 \log {\left (\log {\left (x + 2 e x + 3 \right )} \right )} + 4}{\log {\left (\log {\left (x + 2 e x + 3 \right )} \right )}}} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________