Optimal. Leaf size=22 \[ 3 \left (-e^x+\frac {4-\frac {4}{e^{25}}}{x}-11 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 6, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 14, 2194} \begin {gather*} -33 x-3 e^x+\frac {12 \left (1-\frac {1}{e^{25}}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {12-3 e^{25+x} x^2+e^{25} \left (-12-33 x^2\right )}{x^2} \, dx}{e^{25}}\\ &=\frac {\int \left (-3 e^{25+x}-\frac {3 \left (-4+4 e^{25}+11 e^{25} x^2\right )}{x^2}\right ) \, dx}{e^{25}}\\ &=-\frac {3 \int e^{25+x} \, dx}{e^{25}}-\frac {3 \int \frac {-4+4 e^{25}+11 e^{25} x^2}{x^2} \, dx}{e^{25}}\\ &=-3 e^x-\frac {3 \int \left (11 e^{25}+\frac {4 \left (-1+e^{25}\right )}{x^2}\right ) \, dx}{e^{25}}\\ &=-3 e^x+\frac {12 \left (1-\frac {1}{e^{25}}\right )}{x}-33 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 1.00 \begin {gather*} -3 e^x+\frac {12}{x}-\frac {12}{e^{25} x}-33 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 25, normalized size = 1.14 \begin {gather*} -\frac {3 \, {\left ({\left (11 \, x^{2} - 4\right )} e^{25} + x e^{\left (x + 25\right )} + 4\right )} e^{\left (-25\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 26, normalized size = 1.18 \begin {gather*} -\frac {3 \, {\left (11 \, x^{2} e^{25} + x e^{\left (x + 25\right )} - 4 \, e^{25} + 4\right )} e^{\left (-25\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 1.14
method | result | size |
risch | \(-33 x +\frac {12 \,{\mathrm e}^{-25} {\mathrm e}^{25}}{x}-\frac {12 \,{\mathrm e}^{-25}}{x}-3 \,{\mathrm e}^{x}\) | \(25\) |
norman | \(\frac {-33 x^{2}+12 \left ({\mathrm e}^{25}-1\right ) {\mathrm e}^{-25}-3 \,{\mathrm e}^{x} x}{x}\) | \(26\) |
default | \({\mathrm e}^{-25} \left (-\frac {12}{x}+\frac {12 \,{\mathrm e}^{25}}{x}-3 \,{\mathrm e}^{x} {\mathrm e}^{25}-33 x \,{\mathrm e}^{25}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 26, normalized size = 1.18 \begin {gather*} -3 \, {\left (11 \, x e^{25} - \frac {4 \, e^{25}}{x} + \frac {4}{x} + e^{\left (x + 25\right )}\right )} e^{\left (-25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.77, size = 19, normalized size = 0.86 \begin {gather*} -33\,x-3\,{\mathrm {e}}^x-\frac {12\,{\mathrm {e}}^{-25}-12}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 24, normalized size = 1.09 \begin {gather*} \frac {- 33 x e^{25} - \frac {12 - 12 e^{25}}{x}}{e^{25}} - 3 e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________