Optimal. Leaf size=37 \[ \frac {-x+\frac {x^2}{4}-\log \left (\left (e-\frac {x}{4 (5-x)}\right )^2\right )}{3 x} \]
________________________________________________________________________________________
Rubi [B] time = 1.04, antiderivative size = 196, normalized size of antiderivative = 5.30, number of steps used = 16, number of rules used = 9, integrand size = 127, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {6688, 12, 6742, 43, 72, 2490, 36, 29, 31} \begin {gather*} \frac {e x}{3 (1+4 e)}+\frac {x}{12 (1+4 e)}+\frac {2}{15} \log (5-x)-\frac {(1+4 e) \log (20 e-(1+4 e) x)}{30 e}+\frac {5 e \log (20 e-(1+4 e) x)}{3 (1+4 e)}-\frac {20 e^2 \log (20 e-(1+4 e) x)}{3 (1+4 e)^2}-\frac {5 e \log (20 e-(1+4 e) x)}{3 (1+4 e)^2}+\frac {\log (20 e-(1+4 e) x)}{30 e}-\frac {(5-x) \log \left (\frac {(20 e-(1+4 e) x)^2}{16 (5-x)^2}\right )}{15 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 43
Rule 72
Rule 2490
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {40 x+4 e (-5+x)^2 x^2-5 x^3+x^4+4 (-5+x) (4 e (-5+x)+x) \log \left (\frac {(4 e (-5+x)+x)^2}{16 (-5+x)^2}\right )}{12 (5-x) x^2 (20 e-(1+4 e) x)} \, dx\\ &=\frac {1}{12} \int \frac {40 x+4 e (-5+x)^2 x^2-5 x^3+x^4+4 (-5+x) (4 e (-5+x)+x) \log \left (\frac {(4 e (-5+x)+x)^2}{16 (-5+x)^2}\right )}{(5-x) x^2 (20 e-(1+4 e) x)} \, dx\\ &=\frac {1}{12} \int \left (\frac {4 e (5-x)}{20 e-(1+4 e) x}+\frac {40}{(5-x) x (20 e-(1+4 e) x)}+\frac {5 x}{(-5+x) (20 e-(1+4 e) x)}+\frac {x^2}{(5-x) (20 e-(1+4 e) x)}+\frac {4 \log \left (\frac {(-20 e+(1+4 e) x)^2}{16 (-5+x)^2}\right )}{x^2}\right ) \, dx\\ &=\frac {1}{12} \int \frac {x^2}{(5-x) (20 e-(1+4 e) x)} \, dx+\frac {1}{3} \int \frac {\log \left (\frac {(-20 e+(1+4 e) x)^2}{16 (-5+x)^2}\right )}{x^2} \, dx+\frac {5}{12} \int \frac {x}{(-5+x) (20 e-(1+4 e) x)} \, dx+\frac {10}{3} \int \frac {1}{(5-x) x (20 e-(1+4 e) x)} \, dx+\frac {1}{3} e \int \frac {5-x}{20 e-(1+4 e) x} \, dx\\ &=-\frac {(5-x) \log \left (\frac {(20 e-(1+4 e) x)^2}{16 (5-x)^2}\right )}{15 x}+\frac {1}{12} \int \left (\frac {1}{1+4 e}+\frac {5}{-5+x}+\frac {80 e^2}{(1+4 e) (20 e-(1+4 e) x)}\right ) \, dx+\frac {5}{12} \int \left (\frac {1}{5-x}+\frac {4 e}{-20 e+(1+4 e) x}\right ) \, dx+\frac {2}{3} \int \frac {1}{x (-20 e+(1+4 e) x)} \, dx+\frac {10}{3} \int \left (\frac {1}{25 (-5+x)}+\frac {1}{100 e x}+\frac {(1+4 e)^2}{100 e (20 e-(1+4 e) x)}\right ) \, dx+\frac {1}{3} e \int \left (\frac {1}{1+4 e}+\frac {5}{(1+4 e) (20 e-(1+4 e) x)}\right ) \, dx\\ &=\frac {x}{12 (1+4 e)}+\frac {e x}{3 (1+4 e)}+\frac {2}{15} \log (5-x)+\frac {\log (x)}{30 e}-\frac {5 e \log (20 e-(1+4 e) x)}{3 (1+4 e)^2}-\frac {20 e^2 \log (20 e-(1+4 e) x)}{3 (1+4 e)^2}+\frac {5 e \log (20 e-(1+4 e) x)}{3 (1+4 e)}-\frac {(1+4 e) \log (20 e-(1+4 e) x)}{30 e}-\frac {(5-x) \log \left (\frac {(20 e-(1+4 e) x)^2}{16 (5-x)^2}\right )}{15 x}-\frac {\int \frac {1}{x} \, dx}{30 e}+\frac {(1+4 e) \int \frac {1}{-20 e+(1+4 e) x} \, dx}{30 e}\\ &=\frac {x}{12 (1+4 e)}+\frac {e x}{3 (1+4 e)}+\frac {2}{15} \log (5-x)+\frac {\log (20 e-(1+4 e) x)}{30 e}-\frac {5 e \log (20 e-(1+4 e) x)}{3 (1+4 e)^2}-\frac {20 e^2 \log (20 e-(1+4 e) x)}{3 (1+4 e)^2}+\frac {5 e \log (20 e-(1+4 e) x)}{3 (1+4 e)}-\frac {(1+4 e) \log (20 e-(1+4 e) x)}{30 e}-\frac {(5-x) \log \left (\frac {(20 e-(1+4 e) x)^2}{16 (5-x)^2}\right )}{15 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.39, size = 323, normalized size = 8.73 \begin {gather*} \frac {5 e x^2-(1+4 e)^2 x \log ^2(-4 e (-5+x)-x)+2 (1+4 e)^2 x \log \left (-\frac {1}{5} (1+4 e) (-5+x)\right ) \log \left (\frac {5}{4 e (-5+x)+x}\right )+x \log ^2\left (\frac {5}{4 e (-5+x)+x}\right )+8 e x \log ^2\left (\frac {5}{4 e (-5+x)+x}\right )+16 e^2 x \log ^2\left (\frac {5}{4 e (-5+x)+x}\right )-20 e \log \left (\frac {(4 e (-5+x)+x)^2}{16 (-5+x)^2}\right )+x \log \left (\frac {5}{4 e (-5+x)+x}\right ) \log \left (\frac {(4 e (-5+x)+x)^2}{16 (-5+x)^2}\right )+8 e x \log \left (\frac {5}{4 e (-5+x)+x}\right ) \log \left (\frac {(4 e (-5+x)+x)^2}{16 (-5+x)^2}\right )+16 e^2 x \log \left (\frac {5}{4 e (-5+x)+x}\right ) \log \left (\frac {(4 e (-5+x)+x)^2}{16 (-5+x)^2}\right )+(1+4 e)^2 x \log (-4 e (-5+x)-x) \left (2 \log \left (-\frac {1}{5} (1+4 e) (-5+x)\right )+\log \left (\frac {(4 e (-5+x)+x)^2}{16 (-5+x)^2}\right )\right )}{60 e x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 51, normalized size = 1.38 \begin {gather*} \frac {x^{2} - 4 \, \log \left (\frac {x^{2} + 16 \, {\left (x^{2} - 10 \, x + 25\right )} e^{2} + 8 \, {\left (x^{2} - 5 \, x\right )} e}{16 \, {\left (x^{2} - 10 \, x + 25\right )}}\right )}{12 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 56, normalized size = 1.51 \begin {gather*} \frac {x^{2} - 4 \, \log \left (\frac {16 \, x^{2} e^{2} + 8 \, x^{2} e + x^{2} - 160 \, x e^{2} - 40 \, x e + 400 \, e^{2}}{16 \, {\left (x^{2} - 10 \, x + 25\right )}}\right )}{12 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 53, normalized size = 1.43
method | result | size |
risch | \(-\frac {\ln \left (\frac {\left (16 x^{2}-160 x +400\right ) {\mathrm e}^{2}+\left (8 x^{2}-40 x \right ) {\mathrm e}+x^{2}}{16 x^{2}-160 x +400}\right )}{3 x}+\frac {x}{12}\) | \(53\) |
norman | \(\frac {\frac {x^{2}}{12}-\frac {\ln \left (\frac {\left (16 x^{2}-160 x +400\right ) {\mathrm e}^{2}+\left (8 x^{2}-40 x \right ) {\mathrm e}+x^{2}}{16 x^{2}-160 x +400}\right )}{3}}{x}\) | \(58\) |
derivativedivides | \(-\frac {4 \ln \relax (2)}{15 \left (\frac {5}{x -5}+1\right )}-\frac {-\frac {\left (4 \,{\mathrm e}+1\right ) {\mathrm e}^{-1} \ln \left (16 \,{\mathrm e}^{2}+\frac {40 \,{\mathrm e}}{x -5}+\frac {25}{\left (x -5\right )^{2}}+8 \,{\mathrm e}+\frac {10}{x -5}+1\right )}{60}-\frac {{\mathrm e}^{-1} \ln \left (16 \,{\mathrm e}^{2}+\frac {40 \,{\mathrm e}}{x -5}+\frac {25}{\left (x -5\right )^{2}}+8 \,{\mathrm e}+\frac {10}{x -5}+1\right )}{12 \left (x -5\right )}}{\frac {5}{x -5}+1}+\frac {x}{12}-\frac {5}{12}-\frac {2 \ln \left (4 \,{\mathrm e}+\frac {5}{x -5}+1\right )}{15}-\frac {{\mathrm e}^{-1} \ln \left (4 \,{\mathrm e}+\frac {5}{x -5}+1\right )}{30}\) | \(166\) |
default | \(-\frac {4 \ln \relax (2)}{15 \left (\frac {5}{x -5}+1\right )}-\frac {-\frac {\left (4 \,{\mathrm e}+1\right ) {\mathrm e}^{-1} \ln \left (16 \,{\mathrm e}^{2}+\frac {40 \,{\mathrm e}}{x -5}+\frac {25}{\left (x -5\right )^{2}}+8 \,{\mathrm e}+\frac {10}{x -5}+1\right )}{60}-\frac {{\mathrm e}^{-1} \ln \left (16 \,{\mathrm e}^{2}+\frac {40 \,{\mathrm e}}{x -5}+\frac {25}{\left (x -5\right )^{2}}+8 \,{\mathrm e}+\frac {10}{x -5}+1\right )}{12 \left (x -5\right )}}{\frac {5}{x -5}+1}+\frac {x}{12}-\frac {5}{12}-\frac {2 \ln \left (4 \,{\mathrm e}+\frac {5}{x -5}+1\right )}{15}-\frac {{\mathrm e}^{-1} \ln \left (4 \,{\mathrm e}+\frac {5}{x -5}+1\right )}{30}\) | \(166\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 269, normalized size = 7.27 \begin {gather*} -\frac {1}{30} \, {\left (4 \, e + 1\right )} e^{\left (-1\right )} \log \left (x {\left (4 \, e + 1\right )} - 20 \, e\right ) - \frac {1}{3} \, {\left (\frac {80 \, e^{2} \log \left (x {\left (4 \, e + 1\right )} - 20 \, e\right )}{16 \, e^{2} + 8 \, e + 1} - \frac {x}{4 \, e + 1} - 5 \, \log \left (x - 5\right )\right )} e + \frac {10}{3} \, {\left (\frac {4 \, e \log \left (x {\left (4 \, e + 1\right )} - 20 \, e\right )}{4 \, e + 1} - \log \left (x - 5\right )\right )} e - \frac {5}{3} \, {\left (\log \left (x {\left (4 \, e + 1\right )} - 20 \, e\right ) - \log \left (x - 5\right )\right )} e + \frac {{\left (40 \, e \log \relax (2) + {\left (x {\left (4 \, e + 1\right )} - 20 \, e\right )} \log \left (x {\left (4 \, e + 1\right )} - 20 \, e\right ) - 4 \, {\left (x e - 5 \, e\right )} \log \left (x - 5\right )\right )} e^{\left (-1\right )}}{30 \, x} - \frac {20 \, e^{2} \log \left (x {\left (4 \, e + 1\right )} - 20 \, e\right )}{3 \, {\left (16 \, e^{2} + 8 \, e + 1\right )}} + \frac {5 \, e \log \left (x {\left (4 \, e + 1\right )} - 20 \, e\right )}{3 \, {\left (4 \, e + 1\right )}} + \frac {x}{12 \, {\left (4 \, e + 1\right )}} + \frac {2}{15} \, \log \left (x - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.85, size = 53, normalized size = 1.43 \begin {gather*} \frac {x}{12}-\frac {\ln \left (\frac {{\mathrm {e}}^2\,\left (16\,x^2-160\,x+400\right )-\mathrm {e}\,\left (40\,x-8\,x^2\right )+x^2}{16\,x^2-160\,x+400}\right )}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 46, normalized size = 1.24 \begin {gather*} \frac {x}{12} - \frac {\log {\left (\frac {x^{2} + e \left (8 x^{2} - 40 x\right ) + \left (16 x^{2} - 160 x + 400\right ) e^{2}}{16 x^{2} - 160 x + 400} \right )}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________