Optimal. Leaf size=27 \[ e^x-\frac {2}{e-\frac {25}{x}+\frac {1}{3} e^{-2 x} x^2} \]
________________________________________________________________________________________
Rubi [F] time = 3.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {450 e^{4 x}+e^x x^6+e^{5 x} \left (5625-450 e x+9 e^2 x^2\right )+e^{2 x} \left (12 x^3-12 x^4\right )+e^{3 x} \left (-150 x^3+6 e x^4\right )}{x^6+e^{4 x} \left (5625-450 e x+9 e^2 x^2\right )+e^{2 x} \left (-150 x^3+6 e x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {450 e^{4 x}+e^x x^6+e^{5 x} \left (5625-450 e x+9 e^2 x^2\right )+e^{2 x} \left (12 x^3-12 x^4\right )+e^{3 x} \left (-150 x^3+6 e x^4\right )}{\left (75 e^{2 x}-3 e^{1+2 x} x-x^3\right )^2} \, dx\\ &=\int \left (e^x+\frac {50}{(-25+e x)^2}+\frac {2 x^6 \left (75-2 (25+e) x+2 e x^2\right )}{(25-e x)^2 \left (75 e^{2 x}-3 e^{1+2 x} x-x^3\right )^2}+\frac {4 x^3 \left (50-(25+e) x+e x^2\right )}{(25-e x)^2 \left (75 e^{2 x}-3 e^{1+2 x} x-x^3\right )}\right ) \, dx\\ &=\frac {50}{e (25-e x)}+2 \int \frac {x^6 \left (75-2 (25+e) x+2 e x^2\right )}{(25-e x)^2 \left (75 e^{2 x}-3 e^{1+2 x} x-x^3\right )^2} \, dx+4 \int \frac {x^3 \left (50-(25+e) x+e x^2\right )}{(25-e x)^2 \left (75 e^{2 x}-3 e^{1+2 x} x-x^3\right )} \, dx+\int e^x \, dx\\ &=e^x+\frac {50}{e (25-e x)}+2 \int \left (\frac {9765625 (50+3 e)}{e^7 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2}+\frac {781250 (25+e) x}{e^6 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2}+\frac {15625 (50+e) x^2}{e^5 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2}+\frac {31250 x^3}{e^4 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2}-\frac {25 (-50+e) x^4}{e^3 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2}-\frac {2 (-25+e) x^5}{e^2 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2}+\frac {2 x^6}{e \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2}+\frac {6103515625}{e^6 (-25+e x)^2 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2}+\frac {488281250 (25+2 e)}{e^7 (-25+e x) \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2}\right ) \, dx+4 \int \left (-\frac {625 (25+e)}{e^4 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )}-\frac {625 x}{e^3 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )}+\frac {(-25+e) x^2}{e^2 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )}-\frac {x^3}{e \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )}-\frac {390625}{e^3 (-25+e x)^2 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )}-\frac {15625 (25+2 e)}{e^4 (-25+e x) \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )}\right ) \, dx\\ &=e^x+\frac {50}{e (25-e x)}+\frac {12207031250 \int \frac {1}{(-25+e x)^2 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2} \, dx}{e^6}+\frac {62500 \int \frac {x^3}{\left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2} \, dx}{e^4}-\frac {2500 \int \frac {x}{-75 e^{2 x}+3 e^{1+2 x} x+x^3} \, dx}{e^3}-\frac {1562500 \int \frac {1}{(-25+e x)^2 \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )} \, dx}{e^3}+\frac {(50 (50-e)) \int \frac {x^4}{\left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2} \, dx}{e^3}+\frac {(4 (25-e)) \int \frac {x^5}{\left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2} \, dx}{e^2}-\frac {(4 (25-e)) \int \frac {x^2}{-75 e^{2 x}+3 e^{1+2 x} x+x^3} \, dx}{e^2}+\frac {4 \int \frac {x^6}{\left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2} \, dx}{e}-\frac {4 \int \frac {x^3}{-75 e^{2 x}+3 e^{1+2 x} x+x^3} \, dx}{e}+\frac {(1562500 (25+e)) \int \frac {x}{\left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2} \, dx}{e^6}-\frac {(2500 (25+e)) \int \frac {1}{-75 e^{2 x}+3 e^{1+2 x} x+x^3} \, dx}{e^4}+\frac {(31250 (50+e)) \int \frac {x^2}{\left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2} \, dx}{e^5}+\frac {(976562500 (25+2 e)) \int \frac {1}{(-25+e x) \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2} \, dx}{e^7}-\frac {(62500 (25+2 e)) \int \frac {1}{(-25+e x) \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )} \, dx}{e^4}+\frac {(19531250 (50+3 e)) \int \frac {1}{\left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )^2} \, dx}{e^7}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 51, normalized size = 1.89 \begin {gather*} e^x-\frac {50}{e (-25+e x)}+\frac {2 x^4}{(-25+e x) \left (-75 e^{2 x}+3 e^{1+2 x} x+x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 60, normalized size = 2.22 \begin {gather*} \frac {x^{3} e^{\left (x + 1\right )} + 2 \, x^{3} + 3 \, {\left (x e^{2} - 25 \, e\right )} e^{\left (3 \, x\right )} - 150 \, e^{\left (2 \, x\right )}}{x^{3} e + 3 \, {\left (x e^{2} - 25 \, e\right )} e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 50, normalized size = 1.85
method | result | size |
risch | \(-\frac {50 \,{\mathrm e}^{-1}}{x \,{\mathrm e}-25}+{\mathrm e}^{x}+\frac {2 x^{4}}{\left (x \,{\mathrm e}-25\right ) \left (3 x \,{\mathrm e}^{2 x +1}+x^{3}-75 \,{\mathrm e}^{2 x}\right )}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 60, normalized size = 2.22 \begin {gather*} \frac {x^{3} e^{\left (x + 1\right )} + 2 \, x^{3} + 3 \, {\left (x e^{2} - 25 \, e\right )} e^{\left (3 \, x\right )} - 150 \, e^{\left (2 \, x\right )}}{x^{3} e + 3 \, {\left (x e^{2} - 25 \, e\right )} e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.64, size = 61, normalized size = 2.26 \begin {gather*} \frac {{\mathrm {e}}^{-1}\,\left (2\,x^3-75\,{\mathrm {e}}^{3\,x}\,\mathrm {e}-150\,{\mathrm {e}}^{2\,x}+3\,x\,{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^2+x^3\,\mathrm {e}\,{\mathrm {e}}^x\right )}{x^3-75\,{\mathrm {e}}^{2\,x}+3\,x\,{\mathrm {e}}^{2\,x}\,\mathrm {e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 53, normalized size = 1.96 \begin {gather*} \frac {2 x^{4}}{e x^{4} - 25 x^{3} + \left (3 x^{2} e^{2} - 150 e x + 1875\right ) e^{2 x}} + e^{x} - \frac {50}{x e^{2} - 25 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________