Optimal. Leaf size=26 \[ e \left (3 e^5-\log \left (\frac {e+x}{-\frac {3}{x^2}+x}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [C] time = 3.09, antiderivative size = 1214, normalized size of antiderivative = 46.69, number of steps used = 86, number of rules used = 17, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.221, Rules used = {6688, 12, 2528, 2524, 2357, 2301, 2317, 2391, 2337, 2418, 2392, 2390, 260, 2416, 2394, 2393, 2315}
result too large to display
Warning: Unable to verify antiderivative.
[In]
[Out]
Rule 12
Rule 260
Rule 2301
Rule 2315
Rule 2317
Rule 2337
Rule 2357
Rule 2390
Rule 2391
Rule 2392
Rule 2393
Rule 2394
Rule 2416
Rule 2418
Rule 2524
Rule 2528
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e \left (6 e+9 x+e x^3\right ) \left (-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )\right )}{x (e+x) \left (3-x^3\right )} \, dx\\ &=(2 e) \int \frac {\left (6 e+9 x+e x^3\right ) \left (-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )\right )}{x (e+x) \left (3-x^3\right )} \, dx\\ &=(2 e) \int \left (\frac {2 \left (-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )\right )}{x}+\frac {-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )}{e+x}-\frac {3 x^2 \left (-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )\right )}{-3+x^3}\right ) \, dx\\ &=(2 e) \int \frac {-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )}{e+x} \, dx+(4 e) \int \frac {-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )}{x} \, dx-(6 e) \int \frac {x^2 \left (-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )\right )}{-3+x^3} \, dx\\ &=-4 e \log (x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-2 e \log (e+x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-(2 e) \int \frac {\left (-3+x^3\right ) \left (-\frac {3 x^4 (e+x)}{\left (-3+x^3\right )^2}+\frac {x^2}{-3+x^3}+\frac {2 x (e+x)}{-3+x^3}\right ) \log (e+x)}{x^2 (e+x)} \, dx-(4 e) \int \frac {\left (-3+x^3\right ) \left (-\frac {3 x^4 (e+x)}{\left (-3+x^3\right )^2}+\frac {x^2}{-3+x^3}+\frac {2 x (e+x)}{-3+x^3}\right ) \log (x)}{x^2 (e+x)} \, dx-(6 e) \int \left (-\frac {-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )}{3 \left (-\sqrt [3]{-3}-x\right )}-\frac {-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )}{3 \left (\sqrt [3]{3}-x\right )}-\frac {-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )}{3 \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}\right ) \, dx\\ &=-4 e \log (x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-2 e \log (e+x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-(2 e) \int \left (\frac {2 \log (e+x)}{x}+\frac {\log (e+x)}{e+x}-\frac {3 x^2 \log (e+x)}{-3+x^3}\right ) \, dx+(2 e) \int \frac {-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )}{-\sqrt [3]{-3}-x} \, dx+(2 e) \int \frac {-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )}{\sqrt [3]{3}-x} \, dx+(2 e) \int \frac {-3 e^5+\log \left (\frac {x^2 (e+x)}{-3+x^3}\right )}{(-1)^{2/3} \sqrt [3]{3}-x} \, dx-(4 e) \int \left (\frac {2 \log (x)}{x}+\frac {\log (x)}{e+x}-\frac {3 x^2 \log (x)}{-3+x^3}\right ) \, dx\\ &=2 e \log \left (-\sqrt [3]{-3}-x\right ) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )+2 e \log \left (\sqrt [3]{3}-x\right ) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )+2 e \log \left ((-1)^{2/3} \sqrt [3]{3}-x\right ) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-4 e \log (x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-2 e \log (e+x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )+(2 e) \int \frac {\left (-3+x^3\right ) \left (-\frac {3 x^4 (e+x)}{\left (-3+x^3\right )^2}+\frac {x^2}{-3+x^3}+\frac {2 x (e+x)}{-3+x^3}\right ) \log \left (-\sqrt [3]{-3}-x\right )}{x^2 (e+x)} \, dx+(2 e) \int \frac {\left (-3+x^3\right ) \left (-\frac {3 x^4 (e+x)}{\left (-3+x^3\right )^2}+\frac {x^2}{-3+x^3}+\frac {2 x (e+x)}{-3+x^3}\right ) \log \left (\sqrt [3]{3}-x\right )}{x^2 (e+x)} \, dx+(2 e) \int \frac {\left (-3+x^3\right ) \left (-\frac {3 x^4 (e+x)}{\left (-3+x^3\right )^2}+\frac {x^2}{-3+x^3}+\frac {2 x (e+x)}{-3+x^3}\right ) \log \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}{x^2 (e+x)} \, dx-(2 e) \int \frac {\log (e+x)}{e+x} \, dx-(4 e) \int \frac {\log (x)}{e+x} \, dx-(4 e) \int \frac {\log (e+x)}{x} \, dx+(6 e) \int \frac {x^2 \log (e+x)}{-3+x^3} \, dx-(8 e) \int \frac {\log (x)}{x} \, dx+(12 e) \int \frac {x^2 \log (x)}{-3+x^3} \, dx\\ &=-4 e \log (x)-4 e \log ^2(x)-4 e \log (x) \log \left (1+\frac {x}{e}\right )+2 e \log \left (-\sqrt [3]{-3}-x\right ) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )+2 e \log \left (\sqrt [3]{3}-x\right ) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )+2 e \log \left ((-1)^{2/3} \sqrt [3]{3}-x\right ) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-4 e \log (x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-2 e \log (e+x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )+4 e \log (x) \log \left (1-\frac {x^3}{3}\right )+(2 e) \int \left (\frac {2 \log \left (-\sqrt [3]{-3}-x\right )}{x}+\frac {\log \left (-\sqrt [3]{-3}-x\right )}{e+x}-\frac {3 x^2 \log \left (-\sqrt [3]{-3}-x\right )}{-3+x^3}\right ) \, dx+(2 e) \int \left (\frac {2 \log \left (\sqrt [3]{3}-x\right )}{x}+\frac {\log \left (\sqrt [3]{3}-x\right )}{e+x}-\frac {3 x^2 \log \left (\sqrt [3]{3}-x\right )}{-3+x^3}\right ) \, dx+(2 e) \int \left (\frac {2 \log \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}{x}+\frac {\log \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}{e+x}-\frac {3 x^2 \log \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}{-3+x^3}\right ) \, dx-(2 e) \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,e+x\right )-(4 e) \int \frac {\log \left (1-\frac {x^3}{3}\right )}{x} \, dx+(6 e) \int \left (-\frac {\log (e+x)}{3 \left (-\sqrt [3]{-3}-x\right )}-\frac {\log (e+x)}{3 \left (\sqrt [3]{3}-x\right )}-\frac {\log (e+x)}{3 \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}\right ) \, dx\\ &=-4 e \log (x)-4 e \log ^2(x)-e \log ^2(e+x)-4 e \log (x) \log \left (1+\frac {x}{e}\right )+2 e \log \left (-\sqrt [3]{-3}-x\right ) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )+2 e \log \left (\sqrt [3]{3}-x\right ) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )+2 e \log \left ((-1)^{2/3} \sqrt [3]{3}-x\right ) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-4 e \log (x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )-2 e \log (e+x) \left (3 e^5-\log \left (-\frac {x^2 (e+x)}{3-x^3}\right )\right )+4 e \log (x) \log \left (1-\frac {x^3}{3}\right )+\frac {4}{3} e \text {Li}_2\left (\frac {x^3}{3}\right )+(2 e) \int \frac {\log \left (-\sqrt [3]{-3}-x\right )}{e+x} \, dx+(2 e) \int \frac {\log \left (\sqrt [3]{3}-x\right )}{e+x} \, dx+(2 e) \int \frac {\log \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}{e+x} \, dx-(2 e) \int \frac {\log (e+x)}{-\sqrt [3]{-3}-x} \, dx-(2 e) \int \frac {\log (e+x)}{\sqrt [3]{3}-x} \, dx-(2 e) \int \frac {\log (e+x)}{(-1)^{2/3} \sqrt [3]{3}-x} \, dx+(4 e) \int \frac {\log \left (-\sqrt [3]{-3}-x\right )}{x} \, dx+(4 e) \int \frac {\log \left (\sqrt [3]{3}-x\right )}{x} \, dx+(4 e) \int \frac {\log \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}{x} \, dx-(6 e) \int \frac {x^2 \log \left (-\sqrt [3]{-3}-x\right )}{-3+x^3} \, dx-(6 e) \int \frac {x^2 \log \left (\sqrt [3]{3}-x\right )}{-3+x^3} \, dx-(6 e) \int \frac {x^2 \log \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}{-3+x^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.98, size = 1185, normalized size = 45.58
result too large to display
Warning: Unable to verify antiderivative.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 48, normalized size = 1.85 \begin {gather*} e \log \left (\frac {x^{3} + x^{2} e}{x^{3} - 3}\right )^{2} - 6 \, e^{6} \log \left (\frac {x^{3} + x^{2} e}{x^{3} - 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (3 \, {\left ({\left (x^{3} + 6\right )} e^{2} + 9 \, x e\right )} e^{5} - {\left ({\left (x^{3} + 6\right )} e^{2} + 9 \, x e\right )} \log \left (\frac {x^{3} + x^{2} e}{x^{3} - 3}\right )\right )}}{x^{5} - 3 \, x^{2} + {\left (x^{4} - 3 \, x\right )} e}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 51, normalized size = 1.96
method | result | size |
norman | \(-6 \,{\mathrm e} \,{\mathrm e}^{5} \ln \left (\frac {x^{2} {\mathrm e}+x^{3}}{x^{3}-3}\right )+{\mathrm e} \ln \left (\frac {x^{2} {\mathrm e}+x^{3}}{x^{3}-3}\right )^{2}\) | \(51\) |
risch | \(-4 \,{\mathrm e} \ln \relax (x )^{2}-2 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {x^{2} \left (x +{\mathrm e}\right )}{x^{3}-3}\right )-2 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {i \left (-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \sqrt {3}+\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}-2 x}{\left (-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \left (i \sqrt {3}-3\right )}\right )-2 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {i \left (-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \sqrt {3}-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}+2 x}{\left (-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \left (i \sqrt {3}+3\right )}\right )+2 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {x +{\mathrm e}}{-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}+{\mathrm e}}\right )+4 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {x}{-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}}\right )-2 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {x^{2} \left (x +{\mathrm e}\right )}{x^{3}-3}\right )-2 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {i \left (-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \sqrt {3}+\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}-2 x}{\left (-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \left (i \sqrt {3}-3\right )}\right )-2 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {i \left (-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \sqrt {3}-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}+2 x}{\left (-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \left (i \sqrt {3}+3\right )}\right )+2 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {x +{\mathrm e}}{-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}+{\mathrm e}}\right )+4 \,{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \ln \left (\frac {x}{-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}}\right )+4 \,{\mathrm e} \ln \relax (x ) \ln \left (\frac {-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}-x}{-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}}\right )+4 \,{\mathrm e} \ln \relax (x ) \ln \left (\frac {-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}-x}{-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}}\right )-2 \,{\mathrm e} \ln \left (x -3^{\frac {1}{3}}\right ) \ln \left (\frac {\left (i 3^{\frac {5}{6}}-3^{\frac {1}{3}}-2 x \right ) 3^{\frac {2}{3}}}{3 i \sqrt {3}-9}\right )-2 \,{\mathrm e} \ln \left (x -3^{\frac {1}{3}}\right ) \ln \left (\frac {\left (i 3^{\frac {5}{6}}+3^{\frac {1}{3}}+2 x \right ) 3^{\frac {2}{3}}}{3 i \sqrt {3}+9}\right )-2 \,{\mathrm e} \dilog \left (\frac {\left (i 3^{\frac {5}{6}}-3^{\frac {1}{3}}-2 x \right ) 3^{\frac {2}{3}}}{3 i \sqrt {3}-9}\right )-2 \,{\mathrm e} \dilog \left (\frac {\left (i 3^{\frac {5}{6}}+3^{\frac {1}{3}}+2 x \right ) 3^{\frac {2}{3}}}{3 i \sqrt {3}+9}\right )+4 \,{\mathrm e} \dilog \left (\frac {-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}-x}{-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}}\right )-2 \,{\mathrm e} \dilog \left (\frac {i \left (-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \sqrt {3}+\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}-2 x}{\left (-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \left (i \sqrt {3}-3\right )}\right )-2 \,{\mathrm e} \dilog \left (\frac {i \left (-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \sqrt {3}-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}+2 x}{\left (-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right ) \left (i \sqrt {3}+3\right )}\right )+2 \,{\mathrm e} \dilog \left (\frac {x +{\mathrm e}}{-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}+{\mathrm e}}\right )+4 \,{\mathrm e} \dilog \left (\frac {x}{-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}}\right )-2 \,{\mathrm e} \dilog \left (\frac {i \left (-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \sqrt {3}+\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}-2 x}{\left (-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \left (i \sqrt {3}-3\right )}\right )-2 \,{\mathrm e} \dilog \left (\frac {i \left (-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \sqrt {3}-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}+2 x}{\left (-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right ) \left (i \sqrt {3}+3\right )}\right )+2 \,{\mathrm e} \dilog \left (\frac {x +{\mathrm e}}{-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}+{\mathrm e}}\right )+4 \,{\mathrm e} \dilog \left (\frac {x}{-\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}}\right )-{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}-\frac {i 3^{\frac {5}{6}}}{2}\right )^{2}-{\mathrm e} \ln \left (x +\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}\right )^{2}+2 \,{\mathrm e} \dilog \left (\frac {x +{\mathrm e}}{3^{\frac {1}{3}}+{\mathrm e}}\right )+4 \,{\mathrm e} \dilog \left (\frac {x 3^{\frac {2}{3}}}{3}\right )-4 \,{\mathrm e} \dilog \left (-{\mathrm e}^{-1} x \right )-2 \,{\mathrm e} \left (\munderset {\textit {\_R1} =\RootOf \left (-3 \textit {\_Z}^{2} {\mathrm e}+\textit {\_Z}^{3}+3 \,{\mathrm e}^{2} \textit {\_Z} -{\mathrm e}^{3}-3\right )}{\sum }\left (-\ln \left (x +{\mathrm e}\right ) \ln \left (\frac {\textit {\_R1} -x -{\mathrm e}}{\textit {\_R1}}\right )-\dilog \left (\frac {\textit {\_R1} -x -{\mathrm e}}{\textit {\_R1}}\right )\right )\right )-4 \,{\mathrm e} \dilog \left (\left (x +{\mathrm e}\right ) {\mathrm e}^{-1}\right )+4 \,{\mathrm e} \dilog \left (\frac {-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}-x}{-\frac {3^{\frac {1}{3}}}{2}+\frac {i 3^{\frac {5}{6}}}{2}}\right )+4 \,{\mathrm e} \dilog \left (\frac {\left (3^{\frac {1}{3}}-x \right ) 3^{\frac {2}{3}}}{3}\right )-2 \,{\mathrm e} \ln \left (x -3^{\frac {1}{3}}\right ) \ln \left (\frac {x^{2} \left (x +{\mathrm e}\right )}{x^{3}-3}\right )+2 \,{\mathrm e} \ln \left (x -3^{\frac {1}{3}}\right ) \ln \left (\frac {x +{\mathrm e}}{3^{\frac {1}{3}}+{\mathrm e}}\right )+4 \,{\mathrm e} \ln \left (x -3^{\frac {1}{3}}\right ) \ln \left (\frac {x 3^{\frac {2}{3}}}{3}\right )-{\mathrm e} \ln \left (x -3^{\frac {1}{3}}\right )^{2}-12 \,{\mathrm e}^{6} \ln \relax (x )+6 \,{\mathrm e}^{6} \ln \left (x^{3}-3\right )-6 \,{\mathrm e}^{6} \ln \left (x +{\mathrm e}\right )-{\mathrm e} \ln \left (x +{\mathrm e}\right )^{2}+4 \,{\mathrm e} \ln \relax (x ) \ln \left (\frac {\left (3^{\frac {1}{3}}-x \right ) 3^{\frac {2}{3}}}{3}\right )+4 \,{\mathrm e} \ln \relax (x ) \ln \left (\frac {x^{2} \left (x +{\mathrm e}\right )}{x^{3}-3}\right )+2 \,{\mathrm e} \ln \left (x +{\mathrm e}\right ) \ln \left (\frac {x^{2} \left (x +{\mathrm e}\right )}{x^{3}-3}\right )-4 \,{\mathrm e} \ln \relax (x ) \ln \left (\left (x +{\mathrm e}\right ) {\mathrm e}^{-1}\right )-4 \,{\mathrm e} \ln \left (x +{\mathrm e}\right ) \ln \left (-{\mathrm e}^{-1} x \right )\) | \(1571\) |
default | \(\text {Expression too large to display}\) | \(6712\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 5.85, size = 513, normalized size = 19.73 \begin {gather*} e \log \left (x^{3} - 3\right )^{2} + e \log \left (x + e\right )^{2} + 4 \, e \log \left (x + e\right ) \log \relax (x) + 4 \, e \log \relax (x)^{2} - 2 \, {\left (6 \, e^{\left (-1\right )} \log \relax (x) - \frac {6 \cdot 3^{\frac {1}{6}} {\left (3^{\frac {1}{3}} e + 3^{\frac {2}{3}}\right )} \arctan \left (\frac {1}{3} \cdot 3^{\frac {1}{6}} {\left (2 \, x + 3^{\frac {1}{3}}\right )}\right )}{3^{\frac {2}{3}} e^{3} + 3 \cdot 3^{\frac {2}{3}}} - \frac {{\left (2 \cdot 3^{\frac {2}{3}} e^{2} - 3 \cdot 3^{\frac {1}{3}} + 3 \, e\right )} \log \left (x^{2} + 3^{\frac {1}{3}} x + 3^{\frac {2}{3}}\right )}{3^{\frac {2}{3}} e^{3} + 3 \cdot 3^{\frac {2}{3}}} - \frac {2 \, {\left (3^{\frac {2}{3}} e^{2} + 3 \cdot 3^{\frac {1}{3}} - 3 \, e\right )} \log \left (x - 3^{\frac {1}{3}}\right )}{3^{\frac {2}{3}} e^{3} + 3 \cdot 3^{\frac {2}{3}}} - \frac {18 \, \log \left (x + e\right )}{e^{4} + 3 \, e}\right )} e^{7} + {\left (\frac {6 \cdot 3^{\frac {1}{6}} {\left (3^{\frac {1}{3}} e + 3^{\frac {2}{3}}\right )} \arctan \left (\frac {1}{3} \cdot 3^{\frac {1}{6}} {\left (2 \, x + 3^{\frac {1}{3}}\right )}\right )}{3^{\frac {2}{3}} e^{3} + 3 \cdot 3^{\frac {2}{3}}} + \frac {{\left (2 \cdot 3^{\frac {2}{3}} e^{2} - 3 \cdot 3^{\frac {1}{3}} + 3 \, e\right )} \log \left (x^{2} + 3^{\frac {1}{3}} x + 3^{\frac {2}{3}}\right )}{3^{\frac {2}{3}} e^{3} + 3 \cdot 3^{\frac {2}{3}}} + \frac {2 \, {\left (3^{\frac {2}{3}} e^{2} + 3 \cdot 3^{\frac {1}{3}} - 3 \, e\right )} \log \left (x - 3^{\frac {1}{3}}\right )}{3^{\frac {2}{3}} e^{3} + 3 \cdot 3^{\frac {2}{3}}} - \frac {6 \, e^{2} \log \left (x + e\right )}{e^{3} + 3}\right )} e^{7} - 9 \, {\left (\frac {2 \cdot 3^{\frac {1}{6}} {\left (3^{\frac {2}{3}} e + 3^{\frac {1}{3}} e^{2}\right )} \arctan \left (\frac {1}{3} \cdot 3^{\frac {1}{6}} {\left (2 \, x + 3^{\frac {1}{3}}\right )}\right )}{3^{\frac {2}{3}} e^{3} + 3 \cdot 3^{\frac {2}{3}}} - \frac {{\left (3^{\frac {1}{3}} e + 2 \cdot 3^{\frac {2}{3}} - e^{2}\right )} \log \left (x^{2} + 3^{\frac {1}{3}} x + 3^{\frac {2}{3}}\right )}{3^{\frac {2}{3}} e^{3} + 3 \cdot 3^{\frac {2}{3}}} + \frac {2 \, {\left (3^{\frac {1}{3}} e - 3^{\frac {2}{3}} - e^{2}\right )} \log \left (x - 3^{\frac {1}{3}}\right )}{3^{\frac {2}{3}} e^{3} + 3 \cdot 3^{\frac {2}{3}}} + \frac {6 \, \log \left (x + e\right )}{e^{3} + 3}\right )} e^{6} - 2 \, {\left (e \log \left (x + e\right ) + 2 \, e \log \relax (x)\right )} \log \left (x^{3} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.54, size = 50, normalized size = 1.92 \begin {gather*} \mathrm {e}\,{\ln \left (\frac {x^3+\mathrm {e}\,x^2}{x^3-3}\right )}^2+6\,{\mathrm {e}}^6\,\ln \left (x^3-3\right )-6\,{\mathrm {e}}^6\,\ln \left (x+\mathrm {e}\right )-12\,{\mathrm {e}}^6\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.01, size = 53, normalized size = 2.04 \begin {gather*} - 12 e^{6} \log {\relax (x )} + e \log {\left (\frac {x^{3} + e x^{2}}{x^{3} - 3} \right )}^{2} - 6 e^{6} \log {\left (x + e \right )} + 6 e^{6} \log {\left (x^{3} - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________