Optimal. Leaf size=29 \[ \frac {\left (5+\frac {e^x}{2}+5 \left (e^4-x\right )^2 x^2\right ) \log (4)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 45, normalized size of antiderivative = 1.55, number of steps used = 6, number of rules used = 3, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {12, 14, 2197} \begin {gather*} 5 x^3 \log (4)-10 e^4 x^2 \log (4)+5 e^8 x \log (4)+\frac {e^x \log (4)}{2 x}+\frac {5 \log (4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^x (-1+x) \log (4)+\left (-10+10 e^8 x^2-40 e^4 x^3+30 x^4\right ) \log (4)}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {e^x (-1+x) \log (4)}{x^2}+\frac {10 \left (-1+e^8 x^2-4 e^4 x^3+3 x^4\right ) \log (4)}{x^2}\right ) \, dx\\ &=\frac {1}{2} \log (4) \int \frac {e^x (-1+x)}{x^2} \, dx+(5 \log (4)) \int \frac {-1+e^8 x^2-4 e^4 x^3+3 x^4}{x^2} \, dx\\ &=\frac {e^x \log (4)}{2 x}+(5 \log (4)) \int \left (e^8-\frac {1}{x^2}-4 e^4 x+3 x^2\right ) \, dx\\ &=\frac {5 \log (4)}{x}+\frac {e^x \log (4)}{2 x}+5 e^8 x \log (4)-10 e^4 x^2 \log (4)+5 x^3 \log (4)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 38, normalized size = 1.31 \begin {gather*} \frac {1}{2} \left (\frac {10}{x}+\frac {e^x}{x}+10 e^8 x-20 e^4 x^2+10 x^3\right ) \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 32, normalized size = 1.10 \begin {gather*} \frac {10 \, {\left (x^{4} - 2 \, x^{3} e^{4} + x^{2} e^{8} + 1\right )} \log \relax (2) + e^{x} \log \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 39, normalized size = 1.34 \begin {gather*} \frac {10 \, x^{4} \log \relax (2) - 20 \, x^{3} e^{4} \log \relax (2) + 10 \, x^{2} e^{8} \log \relax (2) + e^{x} \log \relax (2) + 10 \, \log \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 40, normalized size = 1.38
method | result | size |
risch | \(10 x^{3} \ln \relax (2)+10 \,{\mathrm e}^{8} \ln \relax (2) x +\frac {10 \ln \relax (2)}{x}+\frac {\ln \relax (2) {\mathrm e}^{x}}{x}-20 x^{2} {\mathrm e}^{4} \ln \relax (2)\) | \(40\) |
default | \(10 x^{3} \ln \relax (2)+10 \,{\mathrm e}^{8} \ln \relax (2) x +\frac {10 \ln \relax (2)}{x}+\frac {\ln \relax (2) {\mathrm e}^{x}}{x}-20 x^{2} {\mathrm e}^{4} \ln \relax (2)\) | \(42\) |
norman | \(\frac {{\mathrm e}^{x} \ln \relax (2)+10 x^{4} \ln \relax (2)+10 x^{2} {\mathrm e}^{8} \ln \relax (2)-20 x^{3} {\mathrm e}^{4} \ln \relax (2)+10 \ln \relax (2)}{x}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 45, normalized size = 1.55 \begin {gather*} 10 \, x^{3} \log \relax (2) - 20 \, x^{2} e^{4} \log \relax (2) + 10 \, x e^{8} \log \relax (2) + {\rm Ei}\relax (x) \log \relax (2) - \Gamma \left (-1, -x\right ) \log \relax (2) + \frac {10 \, \log \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.69, size = 24, normalized size = 0.83 \begin {gather*} 10\,x\,\ln \relax (2)\,{\left (x-{\mathrm {e}}^4\right )}^2+\frac {\ln \relax (2)\,\left ({\mathrm {e}}^x+10\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 44, normalized size = 1.52 \begin {gather*} 10 x^{3} \log {\relax (2 )} - 20 x^{2} e^{4} \log {\relax (2 )} + 10 x e^{8} \log {\relax (2 )} + \frac {e^{x} \log {\relax (2 )}}{x} + \frac {10 \log {\relax (2 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________