3.80.28 \(\int \frac {e^{-\frac {2}{-82+3 x}} (26896-1944 x+36 x^2)}{6724-492 x+9 x^2} \, dx\)

Optimal. Leaf size=14 \[ 4 e^{-\frac {2}{-82+3 x}} x \]

________________________________________________________________________________________

Rubi [B]  time = 0.20, antiderivative size = 36, normalized size of antiderivative = 2.57, number of steps used = 7, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {27, 6742, 2206, 2210, 2209} \begin {gather*} \frac {328}{3} e^{\frac {2}{82-3 x}}-\frac {4}{3} e^{\frac {2}{82-3 x}} (82-3 x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(26896 - 1944*x + 36*x^2)/(E^(2/(-82 + 3*x))*(6724 - 492*x + 9*x^2)),x]

[Out]

(328*E^(2/(82 - 3*x)))/3 - (4*E^(2/(82 - 3*x))*(82 - 3*x))/3

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 2206

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> Simp[((c + d*x)*F^(a + b*(c + d*x)^n))/d, x]
- Dist[b*n*Log[F], Int[(c + d*x)^n*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2/n]
 && ILtQ[n, 0]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 2210

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Simp[(F^a*ExpIntegralEi[
b*(c + d*x)^n*Log[F]])/(f*n), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[d*e - c*f, 0]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {2}{-82+3 x}} \left (26896-1944 x+36 x^2\right )}{(-82+3 x)^2} \, dx\\ &=\int \left (4 e^{-\frac {2}{-82+3 x}}+\frac {656 e^{-\frac {2}{-82+3 x}}}{(-82+3 x)^2}+\frac {8 e^{-\frac {2}{-82+3 x}}}{-82+3 x}\right ) \, dx\\ &=4 \int e^{-\frac {2}{-82+3 x}} \, dx+8 \int \frac {e^{-\frac {2}{-82+3 x}}}{-82+3 x} \, dx+656 \int \frac {e^{-\frac {2}{-82+3 x}}}{(-82+3 x)^2} \, dx\\ &=\frac {328}{3} e^{\frac {2}{82-3 x}}-\frac {4}{3} e^{\frac {2}{82-3 x}} (82-3 x)-\frac {8}{3} \text {Ei}\left (\frac {2}{82-3 x}\right )-8 \int \frac {e^{-\frac {2}{-82+3 x}}}{-82+3 x} \, dx\\ &=\frac {328}{3} e^{\frac {2}{82-3 x}}-\frac {4}{3} e^{\frac {2}{82-3 x}} (82-3 x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 14, normalized size = 1.00 \begin {gather*} 4 e^{\frac {2}{82-3 x}} x \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(26896 - 1944*x + 36*x^2)/(E^(2/(-82 + 3*x))*(6724 - 492*x + 9*x^2)),x]

[Out]

4*E^(2/(82 - 3*x))*x

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 13, normalized size = 0.93 \begin {gather*} 4 \, x e^{\left (-\frac {2}{3 \, x - 82}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((36*x^2-1944*x+26896)/(9*x^2-492*x+6724)/exp(2/(3*x-82)),x, algorithm="fricas")

[Out]

4*x*e^(-2/(3*x - 82))

________________________________________________________________________________________

giac [B]  time = 0.16, size = 37, normalized size = 2.64 \begin {gather*} \frac {4}{3} \, {\left (3 \, x - 82\right )} {\left (\frac {82 \, e^{\left (-\frac {2}{3 \, x - 82}\right )}}{3 \, x - 82} + e^{\left (-\frac {2}{3 \, x - 82}\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((36*x^2-1944*x+26896)/(9*x^2-492*x+6724)/exp(2/(3*x-82)),x, algorithm="giac")

[Out]

4/3*(3*x - 82)*(82*e^(-2/(3*x - 82))/(3*x - 82) + e^(-2/(3*x - 82)))

________________________________________________________________________________________

maple [A]  time = 0.28, size = 14, normalized size = 1.00




method result size



risch \(4 x \,{\mathrm e}^{-\frac {2}{3 x -82}}\) \(14\)
gosper \(4 x \,{\mathrm e}^{-\frac {2}{3 x -82}}\) \(16\)
norman \(\frac {\left (12 x^{2}-328 x \right ) {\mathrm e}^{-\frac {2}{3 x -82}}}{3 x -82}\) \(30\)
derivativedivides \(\frac {4 \,{\mathrm e}^{-\frac {2}{3 x -82}} \left (3 x -82\right )}{3}+\frac {328 \,{\mathrm e}^{-\frac {2}{3 x -82}}}{3}\) \(35\)
default \(\frac {4 \,{\mathrm e}^{-\frac {2}{3 x -82}} \left (3 x -82\right )}{3}+\frac {328 \,{\mathrm e}^{-\frac {2}{3 x -82}}}{3}\) \(35\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((36*x^2-1944*x+26896)/(9*x^2-492*x+6724)/exp(2/(3*x-82)),x,method=_RETURNVERBOSE)

[Out]

4*x*exp(-2/(3*x-82))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 4 \, x e^{\left (-\frac {2}{3 \, x - 82}\right )} + \frac {13448}{3} \, e^{\left (-\frac {2}{3 \, x - 82}\right )} - 26896 \, \int \frac {e^{\left (-\frac {2}{3 \, x - 82}\right )}}{9 \, x^{2} - 492 \, x + 6724}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((36*x^2-1944*x+26896)/(9*x^2-492*x+6724)/exp(2/(3*x-82)),x, algorithm="maxima")

[Out]

4*x*e^(-2/(3*x - 82)) + 13448/3*e^(-2/(3*x - 82)) - 26896*integrate(e^(-2/(3*x - 82))/(9*x^2 - 492*x + 6724),
x)

________________________________________________________________________________________

mupad [B]  time = 5.12, size = 13, normalized size = 0.93 \begin {gather*} 4\,x\,{\mathrm {e}}^{-\frac {2}{3\,x-82}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-2/(3*x - 82))*(36*x^2 - 1944*x + 26896))/(9*x^2 - 492*x + 6724),x)

[Out]

4*x*exp(-2/(3*x - 82))

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 10, normalized size = 0.71 \begin {gather*} 4 x e^{- \frac {2}{3 x - 82}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((36*x**2-1944*x+26896)/(9*x**2-492*x+6724)/exp(2/(3*x-82)),x)

[Out]

4*x*exp(-2/(3*x - 82))

________________________________________________________________________________________