Optimal. Leaf size=27 \[ 4 e^{-1/x} x^2 \left (-x^2+(1-x) x^2\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.07, antiderivative size = 15, normalized size of antiderivative = 0.56, number of steps used = 5, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {1593, 2226, 2218} \begin {gather*} -20 \Gamma \left (-5,\frac {1}{x}\right )-4 \Gamma \left (-4,\frac {1}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2218
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-1/x} (-4-20 x) x^3 \, dx\\ &=\int \left (-4 e^{-1/x} x^3-20 e^{-1/x} x^4\right ) \, dx\\ &=-\left (4 \int e^{-1/x} x^3 \, dx\right )-20 \int e^{-1/x} x^4 \, dx\\ &=-20 \Gamma \left (-5,\frac {1}{x}\right )-4 \Gamma \left (-4,\frac {1}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.01, size = 15, normalized size = 0.56 \begin {gather*} -4 \left (5 \Gamma \left (-5,\frac {1}{x}\right )+\Gamma \left (-4,\frac {1}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 11, normalized size = 0.41 \begin {gather*} -4 \, x^{5} e^{\left (-\frac {1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 11, normalized size = 0.41 \begin {gather*} -4 \, x^{5} e^{\left (-\frac {1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 12, normalized size = 0.44
method | result | size |
gosper | \(-4 x^{5} {\mathrm e}^{-\frac {1}{x}}\) | \(12\) |
derivativedivides | \(-4 x^{5} {\mathrm e}^{-\frac {1}{x}}\) | \(12\) |
default | \(-4 x^{5} {\mathrm e}^{-\frac {1}{x}}\) | \(12\) |
norman | \(-4 x^{5} {\mathrm e}^{-\frac {1}{x}}\) | \(12\) |
risch | \(-4 x^{5} {\mathrm e}^{-\frac {1}{x}}\) | \(12\) |
meijerg | \(-4 x^{5}+4 x^{4}-2 x^{3}+\frac {2 x^{2}}{3}-\frac {x}{6}+\frac {1}{30}+\frac {x^{5} \left (-\frac {137}{x^{5}}+\frac {300}{x^{4}}-\frac {600}{x^{3}}+\frac {1200}{x^{2}}-\frac {1800}{x}+1440\right )}{360}-\frac {x^{5} \left (\frac {6}{x^{4}}-\frac {6}{x^{3}}+\frac {12}{x^{2}}-\frac {36}{x}+144\right ) {\mathrm e}^{-\frac {1}{x}}}{36}+\frac {x^{4} \left (\frac {125}{x^{4}}-\frac {240}{x^{3}}+\frac {360}{x^{2}}-\frac {480}{x}+360\right )}{360}-\frac {x^{4} \left (-\frac {5}{x^{3}}+\frac {5}{x^{2}}-\frac {10}{x}+30\right ) {\mathrm e}^{-\frac {1}{x}}}{30}\) | \(146\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.48, size = 15, normalized size = 0.56 \begin {gather*} -4 \, \Gamma \left (-4, \frac {1}{x}\right ) - 20 \, \Gamma \left (-5, \frac {1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.61, size = 11, normalized size = 0.41 \begin {gather*} -4\,x^5\,{\mathrm {e}}^{-\frac {1}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 10, normalized size = 0.37 \begin {gather*} - 4 x^{5} e^{- \frac {1}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________