Optimal. Leaf size=21 \[ \frac {10}{x}+\frac {1}{\left (\frac {1}{x}+\log (2 x-\log (2))\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20 x-4 x^4+4 x^5+\left (-10+2 x^3\right ) \log (2)+\left (60 x^2-30 x \log (2)\right ) \log (2 x-\log (2))+\left (60 x^3-30 x^2 \log (2)\right ) \log ^2(2 x-\log (2))+\left (20 x^4-10 x^3 \log (2)\right ) \log ^3(2 x-\log (2))}{-2 x^3+x^2 \log (2)+\left (-6 x^4+3 x^3 \log (2)\right ) \log (2 x-\log (2))+\left (-6 x^5+3 x^4 \log (2)\right ) \log ^2(2 x-\log (2))+\left (-2 x^6+x^5 \log (2)\right ) \log ^3(2 x-\log (2))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-10 x+2 x^4-2 x^5+5 \log (2)-x^3 \log (2)-15 x (2 x-\log (2)) \log (2 x-\log (2))-15 x^2 (2 x-\log (2)) \log ^2(2 x-\log (2))-5 x^3 (2 x-\log (2)) \log ^3(2 x-\log (2))\right )}{x^2 (2 x-\log (2)) (1+x \log (2 x-\log (2)))^3} \, dx\\ &=2 \int \frac {-10 x+2 x^4-2 x^5+5 \log (2)-x^3 \log (2)-15 x (2 x-\log (2)) \log (2 x-\log (2))-15 x^2 (2 x-\log (2)) \log ^2(2 x-\log (2))-5 x^3 (2 x-\log (2)) \log ^3(2 x-\log (2))}{x^2 (2 x-\log (2)) (1+x \log (2 x-\log (2)))^3} \, dx\\ &=2 \int \left (-\frac {5}{x^2}-\frac {x \left (-2 x+2 x^2+\log (2)\right )}{(2 x-\log (2)) (1+x \log (2 x-\log (2)))^3}\right ) \, dx\\ &=\frac {10}{x}-2 \int \frac {x \left (-2 x+2 x^2+\log (2)\right )}{(2 x-\log (2)) (1+x \log (2 x-\log (2)))^3} \, dx\\ &=\frac {10}{x}-2 \int \left (\frac {x^2}{(1+x \log (2 x-\log (2)))^3}+\frac {x (-2+\log (2))}{2 (1+x \log (2 x-\log (2)))^3}+\frac {\log ^2(2)}{4 (1+x \log (2 x-\log (2)))^3}+\frac {\log ^3(2)}{4 (2 x-\log (2)) (1+x \log (2 x-\log (2)))^3}\right ) \, dx\\ &=\frac {10}{x}-2 \int \frac {x^2}{(1+x \log (2 x-\log (2)))^3} \, dx-(-2+\log (2)) \int \frac {x}{(1+x \log (2 x-\log (2)))^3} \, dx-\frac {1}{2} \log ^2(2) \int \frac {1}{(1+x \log (2 x-\log (2)))^3} \, dx-\frac {1}{2} \log ^3(2) \int \frac {1}{(2 x-\log (2)) (1+x \log (2 x-\log (2)))^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 30, normalized size = 1.43 \begin {gather*} -2 \left (-\frac {5}{x}-\frac {x^2}{2 (1+x \log (2 x-\log (2)))^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 67, normalized size = 3.19 \begin {gather*} \frac {10 \, x^{2} \log \left (2 \, x - \log \relax (2)\right )^{2} + x^{3} + 20 \, x \log \left (2 \, x - \log \relax (2)\right ) + 10}{x^{3} \log \left (2 \, x - \log \relax (2)\right )^{2} + 2 \, x^{2} \log \left (2 \, x - \log \relax (2)\right ) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 128, normalized size = 6.10 \begin {gather*} \frac {2 \, x^{4} - 2 \, x^{3} + x^{2} \log \relax (2)}{2 \, x^{4} \log \left (2 \, x - \log \relax (2)\right )^{2} - 2 \, x^{3} \log \left (2 \, x - \log \relax (2)\right )^{2} + x^{2} \log \relax (2) \log \left (2 \, x - \log \relax (2)\right )^{2} + 4 \, x^{3} \log \left (2 \, x - \log \relax (2)\right ) - 4 \, x^{2} \log \left (2 \, x - \log \relax (2)\right ) + 2 \, x \log \relax (2) \log \left (2 \, x - \log \relax (2)\right ) + 2 \, x^{2} - 2 \, x + \log \relax (2)} + \frac {10}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.24
method | result | size |
risch | \(\frac {10}{x}+\frac {x^{2}}{\left (x \ln \left (2 x -\ln \relax (2)\right )+1\right )^{2}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 67, normalized size = 3.19 \begin {gather*} \frac {10 \, x^{2} \log \left (2 \, x - \log \relax (2)\right )^{2} + x^{3} + 20 \, x \log \left (2 \, x - \log \relax (2)\right ) + 10}{x^{3} \log \left (2 \, x - \log \relax (2)\right )^{2} + 2 \, x^{2} \log \left (2 \, x - \log \relax (2)\right ) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {{\ln \left (2\,x-\ln \relax (2)\right )}^3\,\left (10\,x^3\,\ln \relax (2)-20\,x^4\right )-\ln \relax (2)\,\left (2\,x^3-10\right )-20\,x+{\ln \left (2\,x-\ln \relax (2)\right )}^2\,\left (30\,x^2\,\ln \relax (2)-60\,x^3\right )+\ln \left (2\,x-\ln \relax (2)\right )\,\left (30\,x\,\ln \relax (2)-60\,x^2\right )+4\,x^4-4\,x^5}{\ln \left (2\,x-\ln \relax (2)\right )\,\left (3\,x^3\,\ln \relax (2)-6\,x^4\right )+{\ln \left (2\,x-\ln \relax (2)\right )}^3\,\left (x^5\,\ln \relax (2)-2\,x^6\right )+{\ln \left (2\,x-\ln \relax (2)\right )}^2\,\left (3\,x^4\,\ln \relax (2)-6\,x^5\right )+x^2\,\ln \relax (2)-2\,x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 32, normalized size = 1.52 \begin {gather*} \frac {x^{2}}{x^{2} \log {\left (2 x - \log {\relax (2 )} \right )}^{2} + 2 x \log {\left (2 x - \log {\relax (2 )} \right )} + 1} + \frac {10}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________