Optimal. Leaf size=36 \[ \frac {4}{x-\frac {2 x}{x^2-\frac {1}{\left (1-e^x+x\right ) \left (1+\frac {3 x}{2}\right )}}} \]
________________________________________________________________________________________
Rubi [F] time = 20.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-48-160 x-144 x^2-80 x^3-264 x^4-320 x^5-220 x^6-120 x^7-36 x^8+e^{2 x} \left (-32 x^2-96 x^3-88 x^4-48 x^5-36 x^6\right )+e^x \left (32+128 x+80 x^2+208 x^3+368 x^4+272 x^5+168 x^6+72 x^7\right )}{36 x^2+120 x^3+148 x^4+20 x^5-120 x^6-100 x^7+x^8+30 x^9+9 x^{10}+e^{2 x} \left (16 x^2+48 x^3+20 x^4-48 x^5-32 x^6+12 x^7+9 x^8\right )+e^x \left (-48 x^2-152 x^3-128 x^4+68 x^5+160 x^6+40 x^7-42 x^8-18 x^9\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (-12-40 x-36 x^2-20 x^3-66 x^4-80 x^5-55 x^6-30 x^7-9 x^8-e^{2 x} x^2 (2+3 x)^2 \left (2+x^2\right )+2 e^x \left (4+16 x+10 x^2+26 x^3+46 x^4+34 x^5+21 x^6+9 x^7\right )\right )}{x^2 \left (6+10 x+4 x^2-5 x^3-3 x^4+e^x \left (-4-6 x+2 x^2+3 x^3\right )\right )^2} \, dx\\ &=4 \int \frac {-12-40 x-36 x^2-20 x^3-66 x^4-80 x^5-55 x^6-30 x^7-9 x^8-e^{2 x} x^2 (2+3 x)^2 \left (2+x^2\right )+2 e^x \left (4+16 x+10 x^2+26 x^3+46 x^4+34 x^5+21 x^6+9 x^7\right )}{x^2 \left (6+10 x+4 x^2-5 x^3-3 x^4+e^x \left (-4-6 x+2 x^2+3 x^3\right )\right )^2} \, dx\\ &=4 \int \left (\frac {-2-x^2}{\left (-2+x^2\right )^2}-\frac {4 \left (-4-16 x+4 x^2+20 x^3+3 x^4\right )}{x^2 (2+3 x) \left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )}+\frac {4 \left (20+20 x+26 x^2+14 x^3-48 x^4-32 x^5+12 x^6+9 x^7\right )}{x (2+3 x) \left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2}\right ) \, dx\\ &=4 \int \frac {-2-x^2}{\left (-2+x^2\right )^2} \, dx-16 \int \frac {-4-16 x+4 x^2+20 x^3+3 x^4}{x^2 (2+3 x) \left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+16 \int \frac {20+20 x+26 x^2+14 x^3-48 x^4-32 x^5+12 x^6+9 x^7}{x (2+3 x) \left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx\\ &=-\frac {4 x}{2-x^2}+16 \int \left (\frac {2}{\left (6-4 e^x+10 x-6 e^x x+4 x^2+2 e^x x^2-5 x^3+3 e^x x^3-3 x^4\right )^2}+\frac {5}{2 x \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2}+\frac {3 x}{\left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2}-\frac {81}{14 (2+3 x) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2}-\frac {4}{\left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2}-\frac {9+4 x}{7 \left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2}\right ) \, dx-16 \int \left (-\frac {1}{2 x^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )}-\frac {5}{4 x \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )}+\frac {81}{28 (2+3 x) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )}+\frac {4}{\left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )}+\frac {2 (4+x)}{7 \left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )}\right ) \, dx\\ &=-\frac {4 x}{2-x^2}-\frac {16}{7} \int \frac {9+4 x}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-\frac {32}{7} \int \frac {4+x}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+8 \int \frac {1}{x^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+20 \int \frac {1}{x \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+32 \int \frac {1}{\left (6-4 e^x+10 x-6 e^x x+4 x^2+2 e^x x^2-5 x^3+3 e^x x^3-3 x^4\right )^2} \, dx+40 \int \frac {1}{x \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-\frac {324}{7} \int \frac {1}{(2+3 x) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+48 \int \frac {x}{\left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-64 \int \frac {1}{\left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-64 \int \frac {1}{\left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx-\frac {648}{7} \int \frac {1}{(2+3 x) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx\\ &=-\frac {4 x}{2-x^2}-\frac {16}{7} \int \left (\frac {9}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2}+\frac {4 x}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2}\right ) \, dx-\frac {32}{7} \int \left (\frac {4}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )}+\frac {x}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )}\right ) \, dx+8 \int \frac {1}{x^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+20 \int \frac {1}{x \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+32 \int \frac {1}{\left (6-4 e^x+10 x-6 e^x x+4 x^2+2 e^x x^2-5 x^3+3 e^x x^3-3 x^4\right )^2} \, dx+40 \int \frac {1}{x \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-\frac {324}{7} \int \frac {1}{(2+3 x) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+48 \int \frac {x}{\left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-64 \int \frac {1}{\left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-64 \int \frac {1}{\left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx-\frac {648}{7} \int \frac {1}{(2+3 x) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx\\ &=-\frac {4 x}{2-x^2}-\frac {32}{7} \int \frac {x}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+8 \int \frac {1}{x^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx-\frac {64}{7} \int \frac {x}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-\frac {128}{7} \int \frac {1}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+20 \int \frac {1}{x \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx-\frac {144}{7} \int \frac {1}{\left (-2+x^2\right ) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx+32 \int \frac {1}{\left (6-4 e^x+10 x-6 e^x x+4 x^2+2 e^x x^2-5 x^3+3 e^x x^3-3 x^4\right )^2} \, dx+40 \int \frac {1}{x \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-\frac {324}{7} \int \frac {1}{(2+3 x) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx+48 \int \frac {x}{\left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-64 \int \frac {1}{\left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx-64 \int \frac {1}{\left (-2+x^2\right )^2 \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )} \, dx-\frac {648}{7} \int \frac {1}{(2+3 x) \left (-6+4 e^x-10 x+6 e^x x-4 x^2-2 e^x x^2+5 x^3-3 e^x x^3+3 x^4\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 61, normalized size = 1.69 \begin {gather*} -\frac {4 \left (-x^2+\frac {4}{6+10 x+4 x^2-5 x^3-3 x^4+e^x \left (-4-6 x+2 x^2+3 x^3\right )}\right )}{x \left (-2+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 83, normalized size = 2.31 \begin {gather*} \frac {4 \, {\left (3 \, x^{4} + 5 \, x^{3} + 2 \, x^{2} - {\left (3 \, x^{3} + 2 \, x^{2}\right )} e^{x} - 2\right )}}{3 \, x^{5} + 5 \, x^{4} - 4 \, x^{3} - 10 \, x^{2} - {\left (3 \, x^{4} + 2 \, x^{3} - 6 \, x^{2} - 4 \, x\right )} e^{x} - 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 85, normalized size = 2.36 \begin {gather*} \frac {4 \, {\left (3 \, x^{4} - 3 \, x^{3} e^{x} + 5 \, x^{3} - 2 \, x^{2} e^{x} + 2 \, x^{2} - 2\right )}}{3 \, x^{5} - 3 \, x^{4} e^{x} + 5 \, x^{4} - 2 \, x^{3} e^{x} - 4 \, x^{3} + 6 \, x^{2} e^{x} - 10 \, x^{2} + 4 \, x e^{x} - 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.17, size = 69, normalized size = 1.92
method | result | size |
risch | \(\frac {4 x}{x^{2}-2}+\frac {16}{\left (x^{2}-2\right ) x \left (3 x^{4}-3 \,{\mathrm e}^{x} x^{3}+5 x^{3}-2 \,{\mathrm e}^{x} x^{2}-4 x^{2}+6 \,{\mathrm e}^{x} x -10 x +4 \,{\mathrm e}^{x}-6\right )}\) | \(69\) |
norman | \(\frac {-8+8 x^{2}+12 x^{4}+20 x^{3}-12 \,{\mathrm e}^{x} x^{3}-8 \,{\mathrm e}^{x} x^{2}}{x \left (3 x^{4}-3 \,{\mathrm e}^{x} x^{3}+5 x^{3}-2 \,{\mathrm e}^{x} x^{2}-4 x^{2}+6 \,{\mathrm e}^{x} x -10 x +4 \,{\mathrm e}^{x}-6\right )}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 83, normalized size = 2.31 \begin {gather*} \frac {4 \, {\left (3 \, x^{4} + 5 \, x^{3} + 2 \, x^{2} - {\left (3 \, x^{3} + 2 \, x^{2}\right )} e^{x} - 2\right )}}{3 \, x^{5} + 5 \, x^{4} - 4 \, x^{3} - 10 \, x^{2} - {\left (3 \, x^{4} + 2 \, x^{3} - 6 \, x^{2} - 4 \, x\right )} e^{x} - 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.41, size = 76, normalized size = 2.11 \begin {gather*} \frac {x^2\,\left (8\,{\mathrm {e}}^x-8\right )+x^3\,\left (12\,{\mathrm {e}}^x-20\right )-12\,x^4+8}{x\,\left (10\,x-4\,{\mathrm {e}}^x+2\,x^2\,{\mathrm {e}}^x+3\,x^3\,{\mathrm {e}}^x-6\,x\,{\mathrm {e}}^x+4\,x^2-5\,x^3-3\,x^4+6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.61, size = 75, normalized size = 2.08 \begin {gather*} \frac {4 x}{x^{2} - 2} - \frac {16}{- 3 x^{7} - 5 x^{6} + 10 x^{5} + 20 x^{4} - 2 x^{3} - 20 x^{2} - 12 x + \left (3 x^{6} + 2 x^{5} - 12 x^{4} - 8 x^{3} + 12 x^{2} + 8 x\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________