Optimal. Leaf size=30 \[ -3+\frac {1}{5} e^{-\frac {e^{16+x}}{2}} \left (x+x \left (e^{e^x}+2 x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{10} e^{-\frac {e^{16+x}}{2}} \left (2+8 x+e^{e^x} \left (2+2 e^x x-e^{16+x} x\right )+e^{16+x} \left (-x-2 x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int e^{-\frac {e^{16+x}}{2}} \left (2+8 x+e^{e^x} \left (2+2 e^x x-e^{16+x} x\right )+e^{16+x} \left (-x-2 x^2\right )\right ) \, dx\\ &=\frac {1}{10} \int \left (2 e^{-\frac {e^{16+x}}{2}}+8 e^{-\frac {e^{16+x}}{2}} x-e^{16-\frac {e^{16+x}}{2}+x} x (1+2 x)+e^{e^x-\frac {e^{16+x}}{2}} \left (2+2 e^x \left (1-\frac {e^{16}}{2}\right ) x\right )\right ) \, dx\\ &=-\left (\frac {1}{10} \int e^{16-\frac {e^{16+x}}{2}+x} x (1+2 x) \, dx\right )+\frac {1}{10} \int e^{e^x-\frac {e^{16+x}}{2}} \left (2+2 e^x \left (1-\frac {e^{16}}{2}\right ) x\right ) \, dx+\frac {1}{5} \int e^{-\frac {e^{16+x}}{2}} \, dx+\frac {4}{5} \int e^{-\frac {e^{16+x}}{2}} x \, dx\\ &=\frac {e^{e^x-\frac {e^{16+x}}{2}+x} \left (2-e^{16}\right ) x}{5 \left (2 e^x-e^{16+x}\right )}-\frac {1}{10} \int \left (e^{16-\frac {e^{16+x}}{2}+x} x+2 e^{16-\frac {e^{16+x}}{2}+x} x^2\right ) \, dx+\frac {1}{5} \operatorname {Subst}\left (\int \frac {e^{-x/2}}{x} \, dx,x,e^{16+x}\right )+\frac {4}{5} \int e^{-\frac {e^{16+x}}{2}} x \, dx\\ &=\frac {e^{e^x-\frac {e^{16+x}}{2}+x} \left (2-e^{16}\right ) x}{5 \left (2 e^x-e^{16+x}\right )}+\frac {1}{5} \text {Ei}\left (-\frac {e^{16+x}}{2}\right )-\frac {1}{10} \int e^{16-\frac {e^{16+x}}{2}+x} x \, dx-\frac {1}{5} \int e^{16-\frac {e^{16+x}}{2}+x} x^2 \, dx+\frac {4}{5} \int e^{-\frac {e^{16+x}}{2}} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 26, normalized size = 0.87 \begin {gather*} \frac {1}{5} e^{-\frac {e^{16+x}}{2}} x \left (1+e^{e^x}+2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 30, normalized size = 1.00 \begin {gather*} \frac {1}{5} \, {\left (2 \, x^{2} + x\right )} e^{\left (-\frac {1}{2} \, e^{\left (x + 16\right )}\right )} + \frac {1}{5} \, x e^{\left (-\frac {1}{2} \, e^{\left (x + 16\right )} + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{10} \, {\left ({\left (2 \, x^{2} + x\right )} e^{\left (x + 16\right )} + {\left (x e^{\left (x + 16\right )} - 2 \, x e^{x} - 2\right )} e^{\left (e^{x}\right )} - 8 \, x - 2\right )} e^{\left (-\frac {1}{2} \, e^{\left (x + 16\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 19, normalized size = 0.63
method | result | size |
risch | \(\frac {\left (2 x +1+{\mathrm e}^{{\mathrm e}^{x}}\right ) x \,{\mathrm e}^{-\frac {{\mathrm e}^{x +16}}{2}}}{5}\) | \(19\) |
norman | \(\left (\frac {x}{5}+\frac {2 x^{2}}{5}+\frac {x \,{\mathrm e}^{{\mathrm e}^{x}}}{5}\right ) {\mathrm e}^{-\frac {{\mathrm e}^{x +16}}{2}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.96, size = 21, normalized size = 0.70 \begin {gather*} \frac {1}{5} \, {\left (2 \, x^{2} + x e^{\left (e^{x}\right )} + x\right )} e^{\left (-\frac {1}{2} \, e^{\left (x + 16\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 18, normalized size = 0.60 \begin {gather*} \frac {x\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{16}\,{\mathrm {e}}^x}{2}}\,\left (2\,x+{\mathrm {e}}^{{\mathrm {e}}^x}+1\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 38.64, size = 139, normalized size = 4.63 \begin {gather*} \frac {2 x^{2} e^{- \frac {e^{16} e^{x}}{2}}}{5} - \frac {2 x e^{- \frac {e^{16} e^{x}}{2} + e^{x}}}{-10 + 5 e^{16}} + \frac {x e^{16} e^{- \frac {e^{16} e^{x}}{2} + e^{x}}}{-10 + 5 e^{16}} + \frac {x e^{- \frac {e^{16} e^{x}}{2}}}{5} - \frac {e^{16} \operatorname {Ei}{\left (- \frac {e^{16} e^{x}}{2} + e^{x} \right )}}{-10 + 5 e^{16}} + \frac {2 \operatorname {Ei}{\left (- \frac {e^{16} e^{x}}{2} + e^{x} \right )}}{-10 + 5 e^{16}} + \frac {\operatorname {Ei}{\left (- \frac {e^{16} e^{x}}{2} + e^{x} \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________