Optimal. Leaf size=24 \[ x-\frac {e (4+5 (-3+x)+x)}{-5+x}-2 \log (5 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 16, normalized size of antiderivative = 0.67, number of steps used = 5, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6, 1594, 27, 1620} \begin {gather*} x+\frac {19 e}{5-x}-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-50+(45+19 e) x-12 x^2+x^3}{25 x-10 x^2+x^3} \, dx\\ &=\int \frac {-50+(45+19 e) x-12 x^2+x^3}{x \left (25-10 x+x^2\right )} \, dx\\ &=\int \frac {-50+(45+19 e) x-12 x^2+x^3}{(-5+x)^2 x} \, dx\\ &=\int \left (1+\frac {19 e}{(-5+x)^2}-\frac {2}{x}\right ) \, dx\\ &=\frac {19 e}{5-x}+x-2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 14, normalized size = 0.58 \begin {gather*} -\frac {19 e}{-5+x}+x-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 24, normalized size = 1.00 \begin {gather*} \frac {x^{2} - 2 \, {\left (x - 5\right )} \log \relax (x) - 5 \, x - 19 \, e}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 16, normalized size = 0.67 \begin {gather*} x - \frac {19 \, e}{x - 5} - 2 \, \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.67
method | result | size |
default | \(x -2 \ln \relax (x )-\frac {19 \,{\mathrm e}}{x -5}\) | \(16\) |
risch | \(x -2 \ln \relax (x )-\frac {19 \,{\mathrm e}}{x -5}\) | \(16\) |
norman | \(\frac {x^{2}-25-19 \,{\mathrm e}}{x -5}-2 \ln \relax (x )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 15, normalized size = 0.62 \begin {gather*} x - \frac {19 \, e}{x - 5} - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 15, normalized size = 0.62 \begin {gather*} x-2\,\ln \relax (x)-\frac {19\,\mathrm {e}}{x-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 14, normalized size = 0.58 \begin {gather*} x - 2 \log {\relax (x )} - \frac {19 e}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________