Optimal. Leaf size=20 \[ -4+e^x+e^{\frac {1}{4 (-1+\log (x))}}+2 x \]
________________________________________________________________________________________
Rubi [A] time = 1.48, antiderivative size = 21, normalized size of antiderivative = 1.05, number of steps used = 32, number of rules used = 9, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {6741, 12, 6742, 2209, 2297, 2299, 2178, 2360, 2194} \begin {gather*} 2 x+e^x+e^{-\frac {1}{4 (1-\log (x))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2194
Rule 2209
Rule 2297
Rule 2299
Rule 2360
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{\frac {1}{-4+4 \log (x)}}+8 x+4 e^x x+\left (-16 x-8 e^x x\right ) \log (x)+\left (8 x+4 e^x x\right ) \log ^2(x)}{4 x (1-\log (x))^2} \, dx\\ &=\frac {1}{4} \int \frac {-e^{\frac {1}{-4+4 \log (x)}}+8 x+4 e^x x+\left (-16 x-8 e^x x\right ) \log (x)+\left (8 x+4 e^x x\right ) \log ^2(x)}{x (1-\log (x))^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {e^{\frac {1}{4 (-1+\log (x))}}}{x (1-\log (x))^2}+\frac {8}{(-1+\log (x))^2}+\frac {4 e^x}{(-1+\log (x))^2}-\frac {8 \left (2+e^x\right ) \log (x)}{(-1+\log (x))^2}+\frac {4 \left (2+e^x\right ) \log ^2(x)}{(-1+\log (x))^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{\frac {1}{4 (-1+\log (x))}}}{x (1-\log (x))^2} \, dx\right )+2 \int \frac {1}{(-1+\log (x))^2} \, dx-2 \int \frac {\left (2+e^x\right ) \log (x)}{(-1+\log (x))^2} \, dx+\int \frac {e^x}{(-1+\log (x))^2} \, dx+\int \frac {\left (2+e^x\right ) \log ^2(x)}{(-1+\log (x))^2} \, dx\\ &=\frac {2 x}{1-\log (x)}-\frac {1}{4} \operatorname {Subst}\left (\int \frac {e^{\frac {1}{4 (-1+x)}}}{(-1+x)^2} \, dx,x,\log (x)\right )+2 \int \frac {1}{-1+\log (x)} \, dx-2 \int \left (\frac {2 \log (x)}{(-1+\log (x))^2}+\frac {e^x \log (x)}{(-1+\log (x))^2}\right ) \, dx+\int \frac {e^x}{(-1+\log (x))^2} \, dx+\int \left (\frac {2 \log ^2(x)}{(-1+\log (x))^2}+\frac {e^x \log ^2(x)}{(-1+\log (x))^2}\right ) \, dx\\ &=e^{-\frac {1}{4 (1-\log (x))}}+\frac {2 x}{1-\log (x)}-2 \int \frac {e^x \log (x)}{(-1+\log (x))^2} \, dx+2 \int \frac {\log ^2(x)}{(-1+\log (x))^2} \, dx+2 \operatorname {Subst}\left (\int \frac {e^x}{-1+x} \, dx,x,\log (x)\right )-4 \int \frac {\log (x)}{(-1+\log (x))^2} \, dx+\int \frac {e^x}{(-1+\log (x))^2} \, dx+\int \frac {e^x \log ^2(x)}{(-1+\log (x))^2} \, dx\\ &=e^{-\frac {1}{4 (1-\log (x))}}+2 e \text {Ei}(-1+\log (x))+\frac {2 x}{1-\log (x)}+2 \int \left (1+\frac {1}{(-1+\log (x))^2}+\frac {2}{-1+\log (x)}\right ) \, dx-2 \int \left (\frac {e^x}{(-1+\log (x))^2}+\frac {e^x}{-1+\log (x)}\right ) \, dx-4 \int \left (\frac {1}{(-1+\log (x))^2}+\frac {1}{-1+\log (x)}\right ) \, dx+\int \left (e^x+\frac {e^x}{(-1+\log (x))^2}+\frac {2 e^x}{-1+\log (x)}\right ) \, dx+\int \frac {e^x}{(-1+\log (x))^2} \, dx\\ &=e^{-\frac {1}{4 (1-\log (x))}}+2 x+2 e \text {Ei}(-1+\log (x))+\frac {2 x}{1-\log (x)}+2 \int \frac {1}{(-1+\log (x))^2} \, dx-2 \int \frac {e^x}{(-1+\log (x))^2} \, dx-4 \int \frac {1}{(-1+\log (x))^2} \, dx+\int e^x \, dx+2 \int \frac {e^x}{(-1+\log (x))^2} \, dx\\ &=e^x+e^{-\frac {1}{4 (1-\log (x))}}+2 x+2 e \text {Ei}(-1+\log (x))-2 \int \frac {e^x}{(-1+\log (x))^2} \, dx+2 \int \frac {1}{-1+\log (x)} \, dx-4 \int \frac {1}{-1+\log (x)} \, dx+2 \int \frac {e^x}{(-1+\log (x))^2} \, dx\\ &=e^x+e^{-\frac {1}{4 (1-\log (x))}}+2 x+2 e \text {Ei}(-1+\log (x))-2 \int \frac {e^x}{(-1+\log (x))^2} \, dx+2 \operatorname {Subst}\left (\int \frac {e^x}{-1+x} \, dx,x,\log (x)\right )-4 \operatorname {Subst}\left (\int \frac {e^x}{-1+x} \, dx,x,\log (x)\right )+2 \int \frac {e^x}{(-1+\log (x))^2} \, dx\\ &=e^x+e^{-\frac {1}{4 (1-\log (x))}}+2 x-2 \int \frac {e^x}{(-1+\log (x))^2} \, dx+2 \int \frac {e^x}{(-1+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 27, normalized size = 1.35 \begin {gather*} \frac {1}{4} \left (4 e^x+4 e^{\frac {1}{4 (-1+\log (x))}}+8 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 15, normalized size = 0.75 \begin {gather*} 2 \, x + e^{x} + e^{\left (\frac {1}{4 \, {\left (\log \relax (x) - 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 15, normalized size = 0.75 \begin {gather*} 2 \, x + e^{x} + e^{\left (\frac {1}{4 \, {\left (\log \relax (x) - 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.80
method | result | size |
risch | \(2 x +{\mathrm e}^{x}+{\mathrm e}^{\frac {1}{4 \ln \relax (x )-4}}\) | \(16\) |
default | \(2 x +{\mathrm e}^{x}+\frac {4 \ln \relax (x ) {\mathrm e}^{\frac {1}{4 \ln \relax (x )-4}}-4 \,{\mathrm e}^{\frac {1}{4 \ln \relax (x )-4}}}{4 \ln \relax (x )-4}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 15, normalized size = 0.75 \begin {gather*} 2 \, x + e^{x} + e^{\left (\frac {1}{4 \, {\left (\log \relax (x) - 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.53, size = 15, normalized size = 0.75 \begin {gather*} 2\,x+{\mathrm {e}}^{\frac {1}{4\,\ln \relax (x)-4}}+{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 15, normalized size = 0.75 \begin {gather*} 2 x + e^{x} + e^{\frac {1}{4 \log {\relax (x )} - 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________