3.79.58 \(\int \frac {600-165 x+554 x^2-168 x^3-6 x^4+3 x^5+(-240+18 x-226 x^2+19 x^3+6 x^4) \log (8+x)+(24+3 x+24 x^2+3 x^3) \log ^2(8+x)}{600 x^2-165 x^3-6 x^4+3 x^5+(-240 x^2+18 x^3+6 x^4) \log (8+x)+(24 x^2+3 x^3) \log ^2(8+x)} \, dx\)

Optimal. Leaf size=26 \[ 4-\frac {1}{x}+x-\frac {x}{3 (5-x-\log (8+x))} \]

________________________________________________________________________________________

Rubi [F]  time = 0.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {600-165 x+554 x^2-168 x^3-6 x^4+3 x^5+\left (-240+18 x-226 x^2+19 x^3+6 x^4\right ) \log (8+x)+\left (24+3 x+24 x^2+3 x^3\right ) \log ^2(8+x)}{600 x^2-165 x^3-6 x^4+3 x^5+\left (-240 x^2+18 x^3+6 x^4\right ) \log (8+x)+\left (24 x^2+3 x^3\right ) \log ^2(8+x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(600 - 165*x + 554*x^2 - 168*x^3 - 6*x^4 + 3*x^5 + (-240 + 18*x - 226*x^2 + 19*x^3 + 6*x^4)*Log[8 + x] + (
24 + 3*x + 24*x^2 + 3*x^3)*Log[8 + x]^2)/(600*x^2 - 165*x^3 - 6*x^4 + 3*x^5 + (-240*x^2 + 18*x^3 + 6*x^4)*Log[
8 + x] + (24*x^2 + 3*x^3)*Log[8 + x]^2),x]

[Out]

-x^(-1) + x - Defer[Int][(-5 + x + Log[8 + x])^(-2), x]/3 - Defer[Int][x/(-5 + x + Log[8 + x])^2, x]/3 + (8*De
fer[Int][1/((8 + x)*(-5 + x + Log[8 + x])^2), x])/3 + Defer[Int][(-5 + x + Log[8 + x])^(-1), x]/3

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {600-165 x+554 x^2-168 x^3-6 x^4+3 x^5+\left (-240+18 x-226 x^2+19 x^3+6 x^4\right ) \log (8+x)+3 \left (8+x+8 x^2+x^3\right ) \log ^2(8+x)}{3 x^2 (8+x) (5-x-\log (8+x))^2} \, dx\\ &=\frac {1}{3} \int \frac {600-165 x+554 x^2-168 x^3-6 x^4+3 x^5+\left (-240+18 x-226 x^2+19 x^3+6 x^4\right ) \log (8+x)+3 \left (8+x+8 x^2+x^3\right ) \log ^2(8+x)}{x^2 (8+x) (5-x-\log (8+x))^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {3 \left (1+x^2\right )}{x^2}-\frac {x (9+x)}{(8+x) (-5+x+\log (8+x))^2}+\frac {1}{-5+x+\log (8+x)}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {x (9+x)}{(8+x) (-5+x+\log (8+x))^2} \, dx\right )+\frac {1}{3} \int \frac {1}{-5+x+\log (8+x)} \, dx+\int \frac {1+x^2}{x^2} \, dx\\ &=\frac {1}{3} \int \frac {1}{-5+x+\log (8+x)} \, dx-\frac {1}{3} \int \left (\frac {1}{(-5+x+\log (8+x))^2}+\frac {x}{(-5+x+\log (8+x))^2}-\frac {8}{(8+x) (-5+x+\log (8+x))^2}\right ) \, dx+\int \left (1+\frac {1}{x^2}\right ) \, dx\\ &=-\frac {1}{x}+x-\frac {1}{3} \int \frac {1}{(-5+x+\log (8+x))^2} \, dx-\frac {1}{3} \int \frac {x}{(-5+x+\log (8+x))^2} \, dx+\frac {1}{3} \int \frac {1}{-5+x+\log (8+x)} \, dx+\frac {8}{3} \int \frac {1}{(8+x) (-5+x+\log (8+x))^2} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 24, normalized size = 0.92 \begin {gather*} \frac {1}{3} \left (-\frac {3}{x}+3 x+\frac {x}{-5+x+\log (8+x)}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(600 - 165*x + 554*x^2 - 168*x^3 - 6*x^4 + 3*x^5 + (-240 + 18*x - 226*x^2 + 19*x^3 + 6*x^4)*Log[8 +
x] + (24 + 3*x + 24*x^2 + 3*x^3)*Log[8 + x]^2)/(600*x^2 - 165*x^3 - 6*x^4 + 3*x^5 + (-240*x^2 + 18*x^3 + 6*x^4
)*Log[8 + x] + (24*x^2 + 3*x^3)*Log[8 + x]^2),x]

[Out]

(-3/x + 3*x + x/(-5 + x + Log[8 + x]))/3

________________________________________________________________________________________

fricas [B]  time = 0.78, size = 43, normalized size = 1.65 \begin {gather*} \frac {3 \, x^{3} - 14 \, x^{2} + 3 \, {\left (x^{2} - 1\right )} \log \left (x + 8\right ) - 3 \, x + 15}{3 \, {\left (x^{2} + x \log \left (x + 8\right ) - 5 \, x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3*x^3+24*x^2+3*x+24)*log(x+8)^2+(6*x^4+19*x^3-226*x^2+18*x-240)*log(x+8)+3*x^5-6*x^4-168*x^3+554*x
^2-165*x+600)/((3*x^3+24*x^2)*log(x+8)^2+(6*x^4+18*x^3-240*x^2)*log(x+8)+3*x^5-6*x^4-165*x^3+600*x^2),x, algor
ithm="fricas")

[Out]

1/3*(3*x^3 - 14*x^2 + 3*(x^2 - 1)*log(x + 8) - 3*x + 15)/(x^2 + x*log(x + 8) - 5*x)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 19, normalized size = 0.73 \begin {gather*} x + \frac {x}{3 \, {\left (x + \log \left (x + 8\right ) - 5\right )}} - \frac {1}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3*x^3+24*x^2+3*x+24)*log(x+8)^2+(6*x^4+19*x^3-226*x^2+18*x-240)*log(x+8)+3*x^5-6*x^4-168*x^3+554*x
^2-165*x+600)/((3*x^3+24*x^2)*log(x+8)^2+(6*x^4+18*x^3-240*x^2)*log(x+8)+3*x^5-6*x^4-165*x^3+600*x^2),x, algor
ithm="giac")

[Out]

x + 1/3*x/(x + log(x + 8) - 5) - 1/x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 23, normalized size = 0.88




method result size



risch \(\frac {x^{2}-1}{x}+\frac {x}{3 \ln \left (x +8\right )+3 x -15}\) \(23\)
norman \(\frac {5+x^{3}-\frac {73 x}{3}-\ln \left (x +8\right )^{2} x +\frac {29 x \ln \left (x +8\right )}{3}-\ln \left (x +8\right )}{x \left (\ln \left (x +8\right )+x -5\right )}+\ln \left (x +8\right )\) \(49\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((3*x^3+24*x^2+3*x+24)*ln(x+8)^2+(6*x^4+19*x^3-226*x^2+18*x-240)*ln(x+8)+3*x^5-6*x^4-168*x^3+554*x^2-165*x
+600)/((3*x^3+24*x^2)*ln(x+8)^2+(6*x^4+18*x^3-240*x^2)*ln(x+8)+3*x^5-6*x^4-165*x^3+600*x^2),x,method=_RETURNVE
RBOSE)

[Out]

(x^2-1)/x+1/3*x/(ln(x+8)+x-5)

________________________________________________________________________________________

maxima [B]  time = 0.43, size = 43, normalized size = 1.65 \begin {gather*} \frac {3 \, x^{3} - 14 \, x^{2} + 3 \, {\left (x^{2} - 1\right )} \log \left (x + 8\right ) - 3 \, x + 15}{3 \, {\left (x^{2} + x \log \left (x + 8\right ) - 5 \, x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3*x^3+24*x^2+3*x+24)*log(x+8)^2+(6*x^4+19*x^3-226*x^2+18*x-240)*log(x+8)+3*x^5-6*x^4-168*x^3+554*x
^2-165*x+600)/((3*x^3+24*x^2)*log(x+8)^2+(6*x^4+18*x^3-240*x^2)*log(x+8)+3*x^5-6*x^4-165*x^3+600*x^2),x, algor
ithm="maxima")

[Out]

1/3*(3*x^3 - 14*x^2 + 3*(x^2 - 1)*log(x + 8) - 3*x + 15)/(x^2 + x*log(x + 8) - 5*x)

________________________________________________________________________________________

mupad [B]  time = 6.86, size = 32, normalized size = 1.23 \begin {gather*} x-\frac {\ln \left (x+8\right )+x\,\left (\frac {\ln \left (x+8\right )}{3}-\frac {2}{3}\right )-5}{x\,\left (x+\ln \left (x+8\right )-5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x + 8)*(18*x - 226*x^2 + 19*x^3 + 6*x^4 - 240) - 165*x + log(x + 8)^2*(3*x + 24*x^2 + 3*x^3 + 24) + 5
54*x^2 - 168*x^3 - 6*x^4 + 3*x^5 + 600)/(log(x + 8)*(18*x^3 - 240*x^2 + 6*x^4) + log(x + 8)^2*(24*x^2 + 3*x^3)
 + 600*x^2 - 165*x^3 - 6*x^4 + 3*x^5),x)

[Out]

x - (log(x + 8) + x*(log(x + 8)/3 - 2/3) - 5)/(x*(x + log(x + 8) - 5))

________________________________________________________________________________________

sympy [A]  time = 0.19, size = 17, normalized size = 0.65 \begin {gather*} x + \frac {x}{3 x + 3 \log {\left (x + 8 \right )} - 15} - \frac {1}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3*x**3+24*x**2+3*x+24)*ln(x+8)**2+(6*x**4+19*x**3-226*x**2+18*x-240)*ln(x+8)+3*x**5-6*x**4-168*x**
3+554*x**2-165*x+600)/((3*x**3+24*x**2)*ln(x+8)**2+(6*x**4+18*x**3-240*x**2)*ln(x+8)+3*x**5-6*x**4-165*x**3+60
0*x**2),x)

[Out]

x + x/(3*x + 3*log(x + 8) - 15) - 1/x

________________________________________________________________________________________