Optimal. Leaf size=20 \[ 3+\left (-3+e^{e^x}\right )^2 \log ^2(4+2 x) \]
________________________________________________________________________________________
Rubi [F] time = 1.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {18 \log (4+2 x)+e^{e^x} \left (-12 \log (4+2 x)+e^x (-12-6 x) \log ^2(4+2 x)\right )+e^{2 e^x} \left (2 \log (4+2 x)+e^x (4+2 x) \log ^2(4+2 x)\right )}{2+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (3-e^{e^x}\right ) \left (3-e^{e^x}-e^{e^x+x} (2+x) \log (2 (2+x))\right ) \log (4+2 x)}{2+x} \, dx\\ &=2 \int \frac {\left (3-e^{e^x}\right ) \left (3-e^{e^x}-e^{e^x+x} (2+x) \log (2 (2+x))\right ) \log (4+2 x)}{2+x} \, dx\\ &=2 \int \left (\frac {\left (3-e^{e^x}\right )^2 \log (4+2 x)}{2+x}+e^{e^x+x} \left (-3+e^{e^x}\right ) \log ^2(4+2 x)\right ) \, dx\\ &=2 \int \frac {\left (3-e^{e^x}\right )^2 \log (4+2 x)}{2+x} \, dx+2 \int e^{e^x+x} \left (-3+e^{e^x}\right ) \log ^2(4+2 x) \, dx\\ &=2 \int \left (\frac {6 e^{e^x} \log (4+2 x)}{-2-x}+\frac {9 \log (4+2 x)}{2+x}+\frac {e^{2 e^x} \log (4+2 x)}{2+x}\right ) \, dx+2 \int \left (-3 e^{e^x+x} \log ^2(4+2 x)+e^{2 e^x+x} \log ^2(4+2 x)\right ) \, dx\\ &=2 \int \frac {e^{2 e^x} \log (4+2 x)}{2+x} \, dx+2 \int e^{2 e^x+x} \log ^2(4+2 x) \, dx-6 \int e^{e^x+x} \log ^2(4+2 x) \, dx+12 \int \frac {e^{e^x} \log (4+2 x)}{-2-x} \, dx+18 \int \frac {\log (4+2 x)}{2+x} \, dx\\ &=2 \int e^{2 e^x+x} \log ^2(4+2 x) \, dx-2 \int \frac {\int \frac {e^{2 e^x}}{2+x} \, dx}{2+x} \, dx-6 \int e^{e^x+x} \log ^2(4+2 x) \, dx+9 \operatorname {Subst}\left (\int \frac {2 \log (x)}{x} \, dx,x,4+2 x\right )-12 \int \frac {\int -\frac {e^{e^x}}{2+x} \, dx}{2+x} \, dx+(2 \log (4+2 x)) \int \frac {e^{2 e^x}}{2+x} \, dx+(12 \log (4+2 x)) \int \frac {e^{e^x}}{-2-x} \, dx\\ &=2 \int e^{2 e^x+x} \log ^2(4+2 x) \, dx-2 \int \frac {\int \frac {e^{2 e^x}}{2+x} \, dx}{2+x} \, dx-6 \int e^{e^x+x} \log ^2(4+2 x) \, dx+12 \int \frac {\int \frac {e^{e^x}}{2+x} \, dx}{2+x} \, dx+18 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,4+2 x\right )+(2 \log (4+2 x)) \int \frac {e^{2 e^x}}{2+x} \, dx+(12 \log (4+2 x)) \int \frac {e^{e^x}}{-2-x} \, dx\\ &=9 \log ^2(2 (2+x))+2 \int e^{2 e^x+x} \log ^2(4+2 x) \, dx-2 \int \frac {\int \frac {e^{2 e^x}}{2+x} \, dx}{2+x} \, dx-6 \int e^{e^x+x} \log ^2(4+2 x) \, dx+12 \int \frac {\int \frac {e^{e^x}}{2+x} \, dx}{2+x} \, dx+(2 \log (4+2 x)) \int \frac {e^{2 e^x}}{2+x} \, dx+(12 \log (4+2 x)) \int \frac {e^{e^x}}{-2-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 18, normalized size = 0.90 \begin {gather*} \left (-3+e^{e^x}\right )^2 \log ^2(2 (2+x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 38, normalized size = 1.90 \begin {gather*} e^{\left (2 \, e^{x}\right )} \log \left (2 \, x + 4\right )^{2} - 6 \, e^{\left (e^{x}\right )} \log \left (2 \, x + 4\right )^{2} + 9 \, \log \left (2 \, x + 4\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 83, normalized size = 4.15 \begin {gather*} e^{\left (2 \, e^{x}\right )} \log \relax (2)^{2} - 6 \, e^{\left (e^{x}\right )} \log \relax (2)^{2} + 2 \, e^{\left (2 \, e^{x}\right )} \log \relax (2) \log \left (x + 2\right ) - 12 \, e^{\left (e^{x}\right )} \log \relax (2) \log \left (x + 2\right ) + e^{\left (2 \, e^{x}\right )} \log \left (x + 2\right )^{2} - 6 \, e^{\left (e^{x}\right )} \log \left (x + 2\right )^{2} + 18 \, \log \relax (2) \log \left (x + 2\right ) + 9 \, \log \left (x + 2\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.23, size = 39, normalized size = 1.95
method | result | size |
risch | \(\ln \left (2 x +4\right )^{2} {\mathrm e}^{2 \,{\mathrm e}^{x}}-6 \ln \left (2 x +4\right )^{2} {\mathrm e}^{{\mathrm e}^{x}}+9 \ln \left (2 x +4\right )^{2}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 66, normalized size = 3.30 \begin {gather*} {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (x + 2\right ) + \log \left (x + 2\right )^{2}\right )} e^{\left (2 \, e^{x}\right )} - 6 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (x + 2\right ) + \log \left (x + 2\right )^{2}\right )} e^{\left (e^{x}\right )} + 18 \, \log \relax (2) \log \left (x + 2\right ) + 9 \, \log \left (x + 2\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {18\,\ln \left (2\,x+4\right )-{\mathrm {e}}^{{\mathrm {e}}^x}\,\left ({\mathrm {e}}^x\,\left (6\,x+12\right )\,{\ln \left (2\,x+4\right )}^2+12\,\ln \left (2\,x+4\right )\right )+{\mathrm {e}}^{2\,{\mathrm {e}}^x}\,\left ({\mathrm {e}}^x\,\left (2\,x+4\right )\,{\ln \left (2\,x+4\right )}^2+2\,\ln \left (2\,x+4\right )\right )}{x+2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 22.27, size = 39, normalized size = 1.95 \begin {gather*} e^{2 e^{x}} \log {\left (2 x + 4 \right )}^{2} - 6 e^{e^{x}} \log {\left (2 x + 4 \right )}^{2} + 9 \log {\left (2 x + 4 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________