Optimal. Leaf size=25 \[ e^{\frac {2}{x^3}} \left (-\frac {1}{\frac {8}{3}+x}\right )^{\frac {1}{2 x^3}} \]
________________________________________________________________________________________
Rubi [F] time = 2.58, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3^{\frac {1}{2 x^3}} e^{\frac {2}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}} \left (-3 x+(-24-9 x) \log \left (-\frac {3 e^4}{8+3 x}\right )\right )}{16 x^4+6 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3^{\frac {1}{2 x^3}} e^{\frac {2}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}} \left (-3 x+(-24-9 x) \log \left (-\frac {3 e^4}{8+3 x}\right )\right )}{x^4 (16+6 x)} \, dx\\ &=\int \frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}} \left (-3 x+(-24-9 x) \log \left (-\frac {3 e^4}{8+3 x}\right )\right )}{x^4 (16+6 x)} \, dx\\ &=\int \left (-\frac {3 e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{2 x^3 (8+3 x)}-\frac {3 e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}} \log \left (-\frac {3 e^4}{8+3 x}\right )}{2 x^4}\right ) \, dx\\ &=-\left (\frac {3}{2} \int \frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{x^3 (8+3 x)} \, dx\right )-\frac {3}{2} \int \frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}} \log \left (-\frac {3 e^4}{8+3 x}\right )}{x^4} \, dx\\ &=-\left (\frac {3}{2} \int \left (\frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{8 x^3}-\frac {3 e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{64 x^2}+\frac {9 e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{512 x}-\frac {27 e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{512 (8+3 x)}\right ) \, dx\right )+\frac {3}{2} \int \frac {3 \int \frac {e^{\frac {4+\log (3)}{2 x^3}} \left (\frac {1}{-8-3 x}\right )^{\frac {1}{2 x^3}}}{x^4} \, dx}{-8-3 x} \, dx-\frac {1}{2} \left (3 \log \left (-\frac {3 e^4}{8+3 x}\right )\right ) \int \frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{x^4} \, dx\\ &=-\frac {27 \int \frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{x} \, dx}{1024}+\frac {9}{128} \int \frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{x^2} \, dx+\frac {81 \int \frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{8+3 x} \, dx}{1024}-\frac {3}{16} \int \frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{x^3} \, dx+\frac {9}{2} \int \frac {\int \frac {e^{\frac {4+\log (3)}{2 x^3}} \left (\frac {1}{-8-3 x}\right )^{\frac {1}{2 x^3}}}{x^4} \, dx}{-8-3 x} \, dx-\frac {1}{2} \left (3 \log \left (-\frac {3 e^4}{8+3 x}\right )\right ) \int \frac {e^{\frac {2+\frac {\log (3)}{2}}{x^3}} \left (-\frac {1}{8+3 x}\right )^{\frac {1}{2 x^3}}}{x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.90, size = 32, normalized size = 1.28 \begin {gather*} 3^{\frac {1}{2 x^3}} e^{\frac {2}{x^3}} \left (\frac {1}{-8-3 x}\right )^{\frac {1}{2 x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 17, normalized size = 0.68 \begin {gather*} \left (-\frac {3 \, e^{4}}{3 \, x + 8}\right )^{\frac {1}{2 \, x^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {3 \, {\left ({\left (3 \, x + 8\right )} \log \left (-\frac {3 \, e^{4}}{3 \, x + 8}\right ) + x\right )} \left (-\frac {3 \, e^{4}}{3 \, x + 8}\right )^{\frac {1}{2 \, x^{3}}}}{2 \, {\left (3 \, x^{5} + 8 \, x^{4}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 18, normalized size = 0.72
method | result | size |
risch | \(\left (-\frac {3 \,{\mathrm e}^{4}}{3 x +8}\right )^{\frac {1}{2 x^{3}}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 25, normalized size = 1.00 \begin {gather*} e^{\left (\frac {\log \relax (3)}{2 \, x^{3}} - \frac {\log \left (-3 \, x - 8\right )}{2 \, x^{3}} + \frac {2}{x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.03, size = 22, normalized size = 0.88 \begin {gather*} {\mathrm {e}}^{\frac {2}{x^3}}\,{\left (-\frac {3}{3\,x+8}\right )}^{\frac {1}{2\,x^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 19, normalized size = 0.76 \begin {gather*} e^{\frac {\log {\left (- \frac {3 e^{4}}{3 x + 8} \right )}}{2 x^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________