3.79.24 \(\int (e^x (10-x)+2^{-5+4 x} e^x (-1-2 \log (4))) \, dx\)

Optimal. Leaf size=20 \[ e^x \left (11-4^{2 \left (-\frac {5}{4}+x\right )}-x\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 25, normalized size of antiderivative = 1.25, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2176, 2194, 2287, 12} \begin {gather*} e^x (10-x)-2^{4 x-5} e^x+e^x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^x*(10 - x) + 2^(-5 + 4*x)*E^x*(-1 - 2*Log[4]),x]

[Out]

E^x - 2^(-5 + 4*x)*E^x + E^x*(10 - x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2287

Int[(u_.)*(F_)^(v_)*(G_)^(w_), x_Symbol] :> With[{z = v*Log[F] + w*Log[G]}, Int[u*NormalizeIntegrand[E^z, x],
x] /; BinomialQ[z, x] || (PolynomialQ[z, x] && LeQ[Exponent[z, x], 2])] /; FreeQ[{F, G}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=(-1-\log (16)) \int 2^{-5+4 x} e^x \, dx+\int e^x (10-x) \, dx\\ &=e^x (10-x)+(-1-\log (16)) \int \frac {1}{32} e^{x (1+\log (16))} \, dx+\int e^x \, dx\\ &=e^x+e^x (10-x)+\frac {1}{32} (-1-\log (16)) \int e^{x (1+\log (16))} \, dx\\ &=e^x-2^{-5+4 x} e^x+e^x (10-x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 15, normalized size = 0.75 \begin {gather*} -\frac {1}{32} e^x \left (-352+16^x+32 x\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^x*(10 - x) + 2^(-5 + 4*x)*E^x*(-1 - 2*Log[4]),x]

[Out]

-1/32*(E^x*(-352 + 16^x + 32*x))

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 19, normalized size = 0.95 \begin {gather*} -2^{4 \, x - 5} e^{x} - {\left (x - 11\right )} e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*log(2)-1)*exp(x)*exp((4*x-5)*log(2))+(10-x)*exp(x),x, algorithm="fricas")

[Out]

-2^(4*x - 5)*e^x - (x - 11)*e^x

________________________________________________________________________________________

giac [A]  time = 0.22, size = 22, normalized size = 1.10 \begin {gather*} -{\left (x - 11\right )} e^{x} - e^{\left (4 \, x \log \relax (2) + x - 5 \, \log \relax (2)\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*log(2)-1)*exp(x)*exp((4*x-5)*log(2))+(10-x)*exp(x),x, algorithm="giac")

[Out]

-(x - 11)*e^x - e^(4*x*log(2) + x - 5*log(2))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 15, normalized size = 0.75




method result size



risch \(-\left (2^{4 x -5}+x -11\right ) {\mathrm e}^{x}\) \(15\)
norman \(-{\mathrm e}^{x} x -{\mathrm e}^{x} {\mathrm e}^{\left (4 x -5\right ) \ln \relax (2)}+11 \,{\mathrm e}^{x}\) \(24\)
default \(-{\mathrm e}^{x} x +11 \,{\mathrm e}^{x}-\frac {4 \,{\mathrm e}^{x +\left (4 x -5\right ) \ln \relax (2)} \ln \relax (2)}{1+4 \ln \relax (2)}-\frac {{\mathrm e}^{x +\left (4 x -5\right ) \ln \relax (2)}}{1+4 \ln \relax (2)}\) \(55\)
meijerg \(-11+\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{2}+\frac {1-{\mathrm e}^{x \ln \relax (2) \left (4+\frac {1}{\ln \relax (2)}\right )}}{32+\frac {8}{\ln \relax (2)}}+\frac {1-{\mathrm e}^{x \ln \relax (2) \left (4+\frac {1}{\ln \relax (2)}\right )}}{32 \ln \relax (2) \left (4+\frac {1}{\ln \relax (2)}\right )}+10 \,{\mathrm e}^{x}\) \(70\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-4*ln(2)-1)*exp(x)*exp((4*x-5)*ln(2))+(10-x)*exp(x),x,method=_RETURNVERBOSE)

[Out]

-(2^(4*x-5)+x-11)*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 22, normalized size = 1.10 \begin {gather*} -{\left (x - 1\right )} e^{x} - \frac {1}{32} \, e^{\left (4 \, x \log \relax (2) + x\right )} + 10 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*log(2)-1)*exp(x)*exp((4*x-5)*log(2))+(10-x)*exp(x),x, algorithm="maxima")

[Out]

-(x - 1)*e^x - 1/32*e^(4*x*log(2) + x) + 10*e^x

________________________________________________________________________________________

mupad [B]  time = 0.12, size = 14, normalized size = 0.70 \begin {gather*} -\frac {{\mathrm {e}}^x\,\left (32\,x+2^{4\,x}-352\right )}{32} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(- exp(x)*(x - 10) - exp(log(2)*(4*x - 5))*exp(x)*(4*log(2) + 1),x)

[Out]

-(exp(x)*(32*x + 2^(4*x) - 352))/32

________________________________________________________________________________________

sympy [B]  time = 0.40, size = 32, normalized size = 1.60 \begin {gather*} \left (11 - x\right ) e^{x} + \frac {\left (- 4 \log {\relax (2 )} - 1\right ) e^{x} e^{4 x \log {\relax (2 )}}}{32 + 128 \log {\relax (2 )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*ln(2)-1)*exp(x)*exp((4*x-5)*ln(2))+(10-x)*exp(x),x)

[Out]

(11 - x)*exp(x) + (-4*log(2) - 1)*exp(x)*exp(4*x*log(2))/(32 + 128*log(2))

________________________________________________________________________________________