Optimal. Leaf size=27 \[ \frac {8 x}{e^{-e^{\frac {1}{3 \log (4+x)}}+x}-x} \]
________________________________________________________________________________________
Rubi [A] time = 2.37, antiderivative size = 29, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 4, integrand size = 139, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {6688, 12, 6711, 32} \begin {gather*} -\frac {8}{1-\frac {e^{x-e^{\frac {1}{3 \log (x+4)}}}}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^{e^{\frac {1}{3 \log (4+x)}}+x} \left (-e^{\frac {1}{3 \log (4+x)}} x-3 \left (-4+3 x+x^2\right ) \log ^2(4+x)\right )}{3 (4+x) \left (e^x-e^{e^{\frac {1}{3 \log (4+x)}}} x\right )^2 \log ^2(4+x)} \, dx\\ &=\frac {8}{3} \int \frac {e^{e^{\frac {1}{3 \log (4+x)}}+x} \left (-e^{\frac {1}{3 \log (4+x)}} x-3 \left (-4+3 x+x^2\right ) \log ^2(4+x)\right )}{(4+x) \left (e^x-e^{e^{\frac {1}{3 \log (4+x)}}} x\right )^2 \log ^2(4+x)} \, dx\\ &=8 \operatorname {Subst}\left (\int \frac {1}{(1+x)^2} \, dx,x,-\frac {e^{-e^{\frac {1}{3 \log (4+x)}}+x}}{x}\right )\\ &=-\frac {8}{1-\frac {e^{-e^{\frac {1}{3 \log (4+x)}}+x}}{x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 29, normalized size = 1.07 \begin {gather*} -\frac {8 e^x}{-e^x+e^{e^{\frac {1}{3 \log (4+x)}}} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 23, normalized size = 0.85 \begin {gather*} -\frac {8 \, x}{x - e^{\left (x - e^{\left (\frac {1}{3 \, \log \left (x + 4\right )}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 0.89
method | result | size |
risch | \(-\frac {8 x}{x -{\mathrm e}^{-{\mathrm e}^{\frac {1}{3 \ln \left (4+x \right )}}+x}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 23, normalized size = 0.85 \begin {gather*} -\frac {8 \, e^{x}}{x e^{\left (e^{\left (\frac {1}{3 \, \log \left (x + 4\right )}\right )}\right )} - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.72, size = 172, normalized size = 6.37 \begin {gather*} -\frac {8\,x\,{\left (x\,{\ln \left (x+4\right )}^2+4\,{\ln \left (x+4\right )}^2\right )}^2\,\left (x\,{\mathrm {e}}^{\frac {1}{3\,\ln \left (x+4\right )}}+9\,x\,{\ln \left (x+4\right )}^2-12\,{\ln \left (x+4\right )}^2+3\,x^2\,{\ln \left (x+4\right )}^2\right )}{{\ln \left (x+4\right )}^2\,\left (x-{\mathrm {e}}^{x-{\mathrm {e}}^{\frac {1}{3\,\ln \left (x+4\right )}}}\right )\,\left (x+4\right )\,\left (24\,x\,{\ln \left (x+4\right )}^4-48\,{\ln \left (x+4\right )}^4+21\,x^2\,{\ln \left (x+4\right )}^4+3\,x^3\,{\ln \left (x+4\right )}^4+x^2\,{\ln \left (x+4\right )}^2\,{\mathrm {e}}^{\frac {1}{3\,\ln \left (x+4\right )}}+4\,x\,{\ln \left (x+4\right )}^2\,{\mathrm {e}}^{\frac {1}{3\,\ln \left (x+4\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 17, normalized size = 0.63 \begin {gather*} \frac {8 x}{- x + e^{x - e^{\frac {1}{3 \log {\left (x + 4 \right )}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________