Optimal. Leaf size=23 \[ \frac {e^{-10 \left (-2+x^4\right )} x^3}{-3+\log (x (1+x))} \]
________________________________________________________________________________________
Rubi [F] time = 3.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10 x^2-11 x^3+120 x^6+120 x^7+\left (3 x^2+3 x^3-40 x^6-40 x^7\right ) \log \left (x+x^2\right )}{e^{-20+10 x^4} (9+9 x)+e^{-20+10 x^4} (-6-6 x) \log \left (x+x^2\right )+e^{-20+10 x^4} (1+x) \log ^2\left (x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{20-10 x^4} x^2 \left (-10-11 x+120 x^4+120 x^5-\left (-3-3 x+40 x^4+40 x^5\right ) \log (x (1+x))\right )}{(1+x) (3-\log (x (1+x)))^2} \, dx\\ &=\int \left (\frac {e^{20-10 x^4} x^2 \left (-3+40 x^4\right )}{3-\log (x (1+x))}-\frac {e^{20-10 x^4} x^2 (1+2 x)}{(1+x) (-3+\log (x (1+x)))^2}\right ) \, dx\\ &=\int \frac {e^{20-10 x^4} x^2 \left (-3+40 x^4\right )}{3-\log (x (1+x))} \, dx-\int \frac {e^{20-10 x^4} x^2 (1+2 x)}{(1+x) (-3+\log (x (1+x)))^2} \, dx\\ &=-\int \left (\frac {e^{20-10 x^4}}{(-3+\log (x (1+x)))^2}-\frac {e^{20-10 x^4} x}{(-3+\log (x (1+x)))^2}+\frac {2 e^{20-10 x^4} x^2}{(-3+\log (x (1+x)))^2}-\frac {e^{20-10 x^4}}{(1+x) (-3+\log (x (1+x)))^2}\right ) \, dx+\int \left (\frac {3 e^{20-10 x^4} x^2}{-3+\log (x (1+x))}-\frac {40 e^{20-10 x^4} x^6}{-3+\log (x (1+x))}\right ) \, dx\\ &=-\left (2 \int \frac {e^{20-10 x^4} x^2}{(-3+\log (x (1+x)))^2} \, dx\right )+3 \int \frac {e^{20-10 x^4} x^2}{-3+\log (x (1+x))} \, dx-40 \int \frac {e^{20-10 x^4} x^6}{-3+\log (x (1+x))} \, dx-\int \frac {e^{20-10 x^4}}{(-3+\log (x (1+x)))^2} \, dx+\int \frac {e^{20-10 x^4} x}{(-3+\log (x (1+x)))^2} \, dx+\int \frac {e^{20-10 x^4}}{(1+x) (-3+\log (x (1+x)))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 23, normalized size = 1.00 \begin {gather*} \frac {e^{20-10 x^4} x^3}{-3+\log (x (1+x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 32, normalized size = 1.39 \begin {gather*} \frac {x^{3}}{e^{\left (10 \, x^{4} - 20\right )} \log \left (x^{2} + x\right ) - 3 \, e^{\left (10 \, x^{4} - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.52, size = 22, normalized size = 0.96 \begin {gather*} \frac {x^{3} e^{\left (-10 \, x^{4} + 20\right )}}{\log \left (x^{2} + x\right ) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.09, size = 104, normalized size = 4.52
method | result | size |
risch | \(\frac {2 i x^{3} {\mathrm e}^{-10 x^{4}+20}}{\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (i x \left (x +1\right )\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x +1\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (i x \left (x +1\right )\right )^{2}+\pi \mathrm {csgn}\left (i x \left (x +1\right )\right )^{3}+2 i \ln \relax (x )+2 i \ln \left (x +1\right )-6 i}\) | \(104\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 22, normalized size = 0.96 \begin {gather*} \frac {x^{3} e^{\left (-10 \, x^{4} + 20\right )}}{\log \left (x + 1\right ) + \log \relax (x) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.96, size = 22, normalized size = 0.96 \begin {gather*} \frac {x^3\,{\mathrm {e}}^{20}\,{\mathrm {e}}^{-10\,x^4}}{\ln \left (x^2+x\right )-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 19, normalized size = 0.83 \begin {gather*} \frac {x^{3} e^{20 - 10 x^{4}}}{\log {\left (x^{2} + x \right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________