Optimal. Leaf size=21 \[ 2+e^3-(-1-x)^2-x+\log (\log (\log (x))) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 13, normalized size of antiderivative = 0.62, number of steps used = 5, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6688, 2302, 29} \begin {gather*} -x^2-3 x+\log (\log (\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 2302
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3-2 x+\frac {1}{x \log (x) \log (\log (x))}\right ) \, dx\\ &=-3 x-x^2+\int \frac {1}{x \log (x) \log (\log (x))} \, dx\\ &=-3 x-x^2+\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,\log (x)\right )\\ &=-3 x-x^2+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (\log (x))\right )\\ &=-3 x-x^2+\log (\log (\log (x)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 13, normalized size = 0.62 \begin {gather*} -3 x-x^2+\log (\log (\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 13, normalized size = 0.62 \begin {gather*} -x^{2} - 3 \, x + \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 13, normalized size = 0.62 \begin {gather*} -x^{2} - 3 \, x + \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.67
method | result | size |
default | \(-3 x +\ln \left (\ln \left (\ln \relax (x )\right )\right )-x^{2}\) | \(14\) |
norman | \(-3 x +\ln \left (\ln \left (\ln \relax (x )\right )\right )-x^{2}\) | \(14\) |
risch | \(-3 x +\ln \left (\ln \left (\ln \relax (x )\right )\right )-x^{2}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 13, normalized size = 0.62 \begin {gather*} -x^{2} - 3 \, x + \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.60, size = 13, normalized size = 0.62 \begin {gather*} \ln \left (\ln \left (\ln \relax (x)\right )\right )-3\,x-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 12, normalized size = 0.57 \begin {gather*} - x^{2} - 3 x + \log {\left (\log {\left (\log {\relax (x )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________