Optimal. Leaf size=31 \[ 1-\frac {x}{\log \left (e^{-2 x} \log \left (\frac {e^2}{x^2 \left (-x+x^2\right )}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3-4 x+\left (2 x-2 x^2\right ) \log \left (\frac {e^2}{-x^3+x^4}\right )+(1-x) \log \left (\frac {e^2}{-x^3+x^4}\right ) \log \left (e^{-2 x} \log \left (\frac {e^2}{-x^3+x^4}\right )\right )}{(-1+x) \log \left (\frac {e^2}{-x^3+x^4}\right ) \log ^2\left (e^{-2 x} \log \left (\frac {e^2}{-x^3+x^4}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3+4 x-\left (2 x-2 x^2\right ) \log \left (\frac {e^2}{-x^3+x^4}\right )-(1-x) \log \left (\frac {e^2}{-x^3+x^4}\right ) \log \left (e^{-2 x} \log \left (\frac {e^2}{-x^3+x^4}\right )\right )}{(1-x) \log \left (\frac {e^2}{(-1+x) x^3}\right ) \log ^2\left (e^{-2 x} \log \left (\frac {e^2}{(-1+x) x^3}\right )\right )} \, dx\\ &=\int \left (\frac {3-4 x^2+2 x \log \left (\frac {1}{(-1+x) x^3}\right )-2 x^2 \log \left (\frac {1}{(-1+x) x^3}\right )}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}-\frac {1}{\log \left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}\right ) \, dx\\ &=\int \frac {3-4 x^2+2 x \log \left (\frac {1}{(-1+x) x^3}\right )-2 x^2 \log \left (\frac {1}{(-1+x) x^3}\right )}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx-\int \frac {1}{\log \left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx\\ &=\int \left (\frac {3}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}-\frac {4 x^2}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}+\frac {2 x \log \left (\frac {1}{(-1+x) x^3}\right )}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}-\frac {2 x^2 \log \left (\frac {1}{(-1+x) x^3}\right )}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}\right ) \, dx-\int \frac {1}{\log \left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx\\ &=2 \int \frac {x \log \left (\frac {1}{(-1+x) x^3}\right )}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx-2 \int \frac {x^2 \log \left (\frac {1}{(-1+x) x^3}\right )}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx+3 \int \frac {1}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx-4 \int \frac {x^2}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx-\int \frac {1}{\log \left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx\\ &=2 \int \left (\frac {\log \left (\frac {1}{(-1+x) x^3}\right )}{\left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}+\frac {\log \left (\frac {1}{(-1+x) x^3}\right )}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}\right ) \, dx-2 \int \left (\frac {\log \left (\frac {1}{(-1+x) x^3}\right )}{\left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}+\frac {\log \left (\frac {1}{(-1+x) x^3}\right )}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}+\frac {x \log \left (\frac {1}{(-1+x) x^3}\right )}{\left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}\right ) \, dx+3 \int \frac {1}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx-4 \int \left (\frac {1}{\left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}+\frac {1}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}+\frac {x}{\left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )}\right ) \, dx-\int \frac {1}{\log \left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx\\ &=-\left (2 \int \frac {x \log \left (\frac {1}{(-1+x) x^3}\right )}{\left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx\right )+3 \int \frac {1}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx-4 \int \frac {1}{\left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx-4 \int \frac {1}{(-1+x) \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx-4 \int \frac {x}{\left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right ) \log ^2\left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx-\int \frac {1}{\log \left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 24, normalized size = 0.77 \begin {gather*} -\frac {x}{\log \left (e^{-2 x} \left (2+\log \left (\frac {1}{(-1+x) x^3}\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 26, normalized size = 0.84 \begin {gather*} -\frac {x}{\log \left (e^{\left (-2 \, x\right )} \log \left (\frac {e^{2}}{x^{4} - x^{3}}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 25, normalized size = 0.81 \begin {gather*} \frac {x}{2 \, x - \log \left (-\log \left (x^{4} - x^{3}\right ) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.86, size = 3055, normalized size = 98.55
method | result | size |
risch | \(\text {Expression too large to display}\) | \(3055\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 23, normalized size = 0.74 \begin {gather*} \frac {x}{2 \, x - \log \left (-\log \left (x - 1\right ) - 3 \, \log \relax (x) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {4\,x-\ln \left (-\frac {{\mathrm {e}}^2}{x^3-x^4}\right )\,\left (2\,x-2\,x^2\right )+\ln \left ({\mathrm {e}}^{-2\,x}\,\ln \left (-\frac {{\mathrm {e}}^2}{x^3-x^4}\right )\right )\,\ln \left (-\frac {{\mathrm {e}}^2}{x^3-x^4}\right )\,\left (x-1\right )-3}{{\ln \left ({\mathrm {e}}^{-2\,x}\,\ln \left (-\frac {{\mathrm {e}}^2}{x^3-x^4}\right )\right )}^2\,\ln \left (-\frac {{\mathrm {e}}^2}{x^3-x^4}\right )\,\left (x-1\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.77, size = 20, normalized size = 0.65 \begin {gather*} - \frac {x}{\log {\left (e^{- 2 x} \log {\left (\frac {e^{2}}{x^{4} - x^{3}} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________