Optimal. Leaf size=28 \[ -4 e^{\frac {1}{e^{23}}-x}+e^{\left (-e^4+\frac {x}{5}\right ) x}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.43, antiderivative size = 29, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 9, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.145, Rules used = {12, 6741, 6742, 2194, 2235, 2234, 2204, 2244, 2240} \begin {gather*} e^{\frac {x^2}{5}-e^4 x}+x-4 e^{\frac {1}{e^{23}}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2204
Rule 2234
Rule 2235
Rule 2240
Rule 2244
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{-\frac {-1+e^{23} x}{e^{23}}} \left (20+e^{\frac {-1+e^{23} x}{e^{23}}} \left (5+e^{\frac {1}{5} \left (-5 e^4 x+x^2\right )} \left (-5 e^4+2 x\right )\right )\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {1}{e^{23}}-x} \left (20+e^{\frac {-1+e^{23} x}{e^{23}}} \left (5+e^{\frac {1}{5} \left (-5 e^4 x+x^2\right )} \left (-5 e^4+2 x\right )\right )\right ) \, dx\\ &=\frac {1}{5} \int \left (5+20 e^{\frac {1}{e^{23}}-x}-5 e^{4+\frac {1}{5} x \left (-5 e^4+x\right )}+2 e^{\frac {1}{5} x \left (-5 e^4+x\right )} x\right ) \, dx\\ &=x+\frac {2}{5} \int e^{\frac {1}{5} x \left (-5 e^4+x\right )} x \, dx+4 \int e^{\frac {1}{e^{23}}-x} \, dx-\int e^{4+\frac {1}{5} x \left (-5 e^4+x\right )} \, dx\\ &=-4 e^{\frac {1}{e^{23}}-x}+x+\frac {2}{5} \int e^{-e^4 x+\frac {x^2}{5}} x \, dx-\int e^{4-e^4 x+\frac {x^2}{5}} \, dx\\ &=-4 e^{\frac {1}{e^{23}}-x}+e^{-e^4 x+\frac {x^2}{5}}+x+e^4 \int e^{-e^4 x+\frac {x^2}{5}} \, dx-e^{4-\frac {5 e^8}{4}} \int e^{\frac {5}{4} \left (-e^4+\frac {2 x}{5}\right )^2} \, dx\\ &=-4 e^{\frac {1}{e^{23}}-x}+e^{-e^4 x+\frac {x^2}{5}}+x+\frac {1}{2} e^{4-\frac {5 e^8}{4}} \sqrt {5 \pi } \text {erfi}\left (\frac {5 e^4-2 x}{2 \sqrt {5}}\right )+e^{4-\frac {5 e^8}{4}} \int e^{\frac {5}{4} \left (-e^4+\frac {2 x}{5}\right )^2} \, dx\\ &=-4 e^{\frac {1}{e^{23}}-x}+e^{-e^4 x+\frac {x^2}{5}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 29, normalized size = 1.04 \begin {gather*} -4 e^{\frac {1}{e^{23}}-x}+e^{-e^4 x+\frac {x^2}{5}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 39, normalized size = 1.39 \begin {gather*} {\left ({\left (x + e^{\left (\frac {1}{5} \, x^{2} - x e^{4}\right )}\right )} e^{\left ({\left (x e^{23} - 1\right )} e^{\left (-23\right )}\right )} - 4\right )} e^{\left (-{\left (x e^{23} - 1\right )} e^{\left (-23\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 27, normalized size = 0.96 \begin {gather*} x + e^{\left (\frac {1}{5} \, x^{2} - x e^{4}\right )} - 4 \, e^{\left (-{\left (x e^{23} - 1\right )} e^{\left (-23\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 1.00
method | result | size |
risch | \(x +{\mathrm e}^{-\frac {x \left (5 \,{\mathrm e}^{4}-x \right )}{5}}-4 \,{\mathrm e}^{-\left (x \,{\mathrm e}^{23}-1\right ) {\mathrm e}^{-23}}\) | \(28\) |
norman | \(\left (-4+x \,{\mathrm e}^{\left (x \,{\mathrm e}^{23}-1\right ) {\mathrm e}^{-23}}+{\mathrm e}^{-x \,{\mathrm e}^{4}+\frac {x^{2}}{5}} {\mathrm e}^{\left (x \,{\mathrm e}^{23}-1\right ) {\mathrm e}^{-23}}\right ) {\mathrm e}^{-\left (x \,{\mathrm e}^{23}-1\right ) {\mathrm e}^{-23}}\) | \(57\) |
default | \(x -4 \,{\mathrm e}^{-x} {\mathrm e}^{{\mathrm e}^{-23}}+{\mathrm e}^{-x \,{\mathrm e}^{4}+\frac {x^{2}}{5}}-\frac {i {\mathrm e}^{4} \sqrt {\pi }\, {\mathrm e}^{-\frac {5 \,{\mathrm e}^{8}}{4}} \sqrt {5}\, \erf \left (\frac {i \sqrt {5}\, x}{5}-\frac {i {\mathrm e}^{4} \sqrt {5}}{2}\right )}{2}+\frac {i \sqrt {\pi }\, {\mathrm e}^{4-\frac {5 \,{\mathrm e}^{8}}{4}} \sqrt {5}\, \erf \left (\frac {i \sqrt {5}\, x}{5}-\frac {i {\mathrm e}^{4} \sqrt {5}}{2}\right )}{2}\) | \(96\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 127, normalized size = 4.54 \begin {gather*} \frac {1}{2} i \, \sqrt {5} \sqrt {\pi } \operatorname {erf}\left (\frac {1}{5} i \, \sqrt {5} x - \frac {1}{2} i \, \sqrt {5} e^{4}\right ) e^{\left (-\frac {5}{4} \, e^{8} + 4\right )} + \frac {1}{10} \, \sqrt {5} {\left (\frac {5 \, \sqrt {5} \sqrt {\frac {1}{5}} \sqrt {\pi } {\left (2 \, x - 5 \, e^{4}\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {1}{5}} \sqrt {-{\left (2 \, x - 5 \, e^{4}\right )}^{2}}\right ) - 1\right )} e^{4}}{\sqrt {-{\left (2 \, x - 5 \, e^{4}\right )}^{2}}} + 2 \, \sqrt {5} e^{\left (\frac {1}{20} \, {\left (2 \, x - 5 \, e^{4}\right )}^{2}\right )}\right )} e^{\left (-\frac {5}{4} \, e^{8}\right )} + x - 4 \, e^{\left (-x + e^{\left (-23\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 23, normalized size = 0.82 \begin {gather*} x-4\,{\mathrm {e}}^{{\mathrm {e}}^{-23}-x}+{\mathrm {e}}^{\frac {x^2}{5}-x\,{\mathrm {e}}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 26, normalized size = 0.93 \begin {gather*} x + e^{\frac {x^{2}}{5} - x e^{4}} - 4 e^{- \frac {x e^{23} - 1}{e^{23}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________