3.78.89 \(\int x^{35+609 x+2650 x^2+625 x^3+e^2 (4+x)} (72+1218 x+5300 x^2+1250 x^3+e^2 (8+2 x)+(1218 x+2 e^2 x+10600 x^2+3750 x^3) \log (x)) \, dx\)

Optimal. Leaf size=19 \[ 2 x^{(4+x) \left (e^2+(3+25 x)^2\right )} \]

________________________________________________________________________________________

Rubi [F]  time = 1.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int x^{35+609 x+2650 x^2+625 x^3+e^2 (4+x)} \left (72+1218 x+5300 x^2+1250 x^3+e^2 (8+2 x)+\left (1218 x+2 e^2 x+10600 x^2+3750 x^3\right ) \log (x)\right ) \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[x^(35 + 609*x + 2650*x^2 + 625*x^3 + E^2*(4 + x))*(72 + 1218*x + 5300*x^2 + 1250*x^3 + E^2*(8 + 2*x) + (12
18*x + 2*E^2*x + 10600*x^2 + 3750*x^3)*Log[x]),x]

[Out]

2*(609 + E^2)*Defer[Int][x^((4 + x)*(9 + E^2 + 150*x + 625*x^2)), x] + 2*(609 + E^2)*Log[x]*Defer[Int][x^((4 +
 x)*(9 + E^2 + 150*x + 625*x^2)), x] + 8*(9 + E^2)*Defer[Int][x^(35 + 4*E^2 + (609 + E^2)*x + 2650*x^2 + 625*x
^3), x] + 5300*Defer[Int][x^(37 + 4*E^2 + (609 + E^2)*x + 2650*x^2 + 625*x^3), x] + 10600*Log[x]*Defer[Int][x^
(37 + 4*E^2 + (609 + E^2)*x + 2650*x^2 + 625*x^3), x] + 1250*Defer[Int][x^(2*(19 + 2*E^2) + (609 + E^2)*x + 26
50*x^2 + 625*x^3), x] + 3750*Log[x]*Defer[Int][x^(2*(19 + 2*E^2) + (609 + E^2)*x + 2650*x^2 + 625*x^3), x] - 2
*(609 + E^2)*Defer[Int][Defer[Int][x^((4 + x)*(9 + E^2 + 150*x + 625*x^2)), x]/x, x] - 10600*Defer[Int][Defer[
Int][x^(37 + 4*E^2 + (609 + E^2)*x + 2650*x^2 + 625*x^3), x]/x, x] - 3750*Defer[Int][Defer[Int][x^(2*(19 + 2*E
^2) + (609 + E^2)*x + 2650*x^2 + 625*x^3), x]/x, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \left (72+1218 x+5300 x^2+1250 x^3+e^2 (8+2 x)+\left (1218 x+2 e^2 x+10600 x^2+3750 x^3\right ) \log (x)\right ) \, dx\\ &=\int 2 x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \left ((4+x) \left (e^2+(3+25 x)^2\right )+x \left (609+e^2+5300 x+1875 x^2\right ) \log (x)\right ) \, dx\\ &=2 \int x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \left ((4+x) \left (e^2+(3+25 x)^2\right )+x \left (609+e^2+5300 x+1875 x^2\right ) \log (x)\right ) \, dx\\ &=2 \int \left (x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} (4+x) \left (9+e^2+150 x+625 x^2\right )+x^{36+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \left (609+e^2+5300 x+1875 x^2\right ) \log (x)\right ) \, dx\\ &=2 \int x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} (4+x) \left (9+e^2+150 x+625 x^2\right ) \, dx+2 \int x^{36+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \left (609+e^2+5300 x+1875 x^2\right ) \log (x) \, dx\\ &=2 \int \left (4 \left (9+e^2\right ) x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3}+\left (609+e^2\right ) x^{36+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3}+2650 x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3}+625 x^{38+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3}\right ) \, dx-2 \int \frac {5300 \int x^{37+609 x+2650 x^2+625 x^3+e^2 (4+x)} \, dx+1875 \int x^{38+609 x+2650 x^2+625 x^3+e^2 (4+x)} \, dx+\left (609+e^2\right ) \int x^{(4+x) \left (e^2+(3+25 x)^2\right )} \, dx}{x} \, dx+(3750 \log (x)) \int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+(10600 \log (x)) \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (2 \left (609+e^2\right ) \log (x)\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx\\ &=-\left (2 \int \left (\frac {1875 \int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx}{x}+\frac {5300 \int x^{37+609 x+2650 x^2+625 x^3+e^2 (4+x)} \, dx+609 \left (1+\frac {e^2}{609}\right ) \int x^{(4+x) \left (e^2+(3+25 x)^2\right )} \, dx}{x}\right ) \, dx\right )+1250 \int x^{38+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+5300 \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (8 \left (9+e^2\right )\right ) \int x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (2 \left (609+e^2\right )\right ) \int x^{36+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+(3750 \log (x)) \int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+(10600 \log (x)) \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (2 \left (609+e^2\right ) \log (x)\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx\\ &=-\left (2 \int \frac {609 \left (1+\frac {e^2}{609}\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx+5300 \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx}{x} \, dx\right )+1250 \int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx-3750 \int \frac {\int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx}{x} \, dx+5300 \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (8 \left (9+e^2\right )\right ) \int x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (2 \left (609+e^2\right )\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx+(3750 \log (x)) \int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+(10600 \log (x)) \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (2 \left (609+e^2\right ) \log (x)\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx\\ &=-\left (2 \int \left (\frac {\left (609+e^2\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx}{x}+\frac {5300 \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx}{x}\right ) \, dx\right )+1250 \int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx-3750 \int \frac {\int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx}{x} \, dx+5300 \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (8 \left (9+e^2\right )\right ) \int x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (2 \left (609+e^2\right )\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx+(3750 \log (x)) \int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+(10600 \log (x)) \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (2 \left (609+e^2\right ) \log (x)\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx\\ &=1250 \int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx-3750 \int \frac {\int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx}{x} \, dx+5300 \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx-10600 \int \frac {\int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx}{x} \, dx+\left (8 \left (9+e^2\right )\right ) \int x^{35+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (2 \left (609+e^2\right )\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx-\left (2 \left (609+e^2\right )\right ) \int \frac {\int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx}{x} \, dx+(3750 \log (x)) \int x^{2 \left (19+2 e^2\right )+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+(10600 \log (x)) \int x^{37+4 e^2+\left (609+e^2\right ) x+2650 x^2+625 x^3} \, dx+\left (2 \left (609+e^2\right ) \log (x)\right ) \int x^{(4+x) \left (9+e^2+150 x+625 x^2\right )} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 19, normalized size = 1.00 \begin {gather*} 2 x^{(4+x) \left (e^2+(3+25 x)^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(35 + 609*x + 2650*x^2 + 625*x^3 + E^2*(4 + x))*(72 + 1218*x + 5300*x^2 + 1250*x^3 + E^2*(8 + 2*x)
 + (1218*x + 2*E^2*x + 10600*x^2 + 3750*x^3)*Log[x]),x]

[Out]

2*x^((4 + x)*(E^2 + (3 + 25*x)^2))

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 25, normalized size = 1.32 \begin {gather*} 2 \, x^{625 \, x^{3} + 2650 \, x^{2} + {\left (x + 4\right )} e^{2} + 609 \, x + 36} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*exp(2)*x+3750*x^3+10600*x^2+1218*x)*log(x)+(2*x+8)*exp(2)+1250*x^3+5300*x^2+1218*x+72)*exp(((4+x
)*exp(2)+625*x^3+2650*x^2+609*x+36)*log(x))/x,x, algorithm="fricas")

[Out]

2*x^(625*x^3 + 2650*x^2 + (x + 4)*e^2 + 609*x + 36)

________________________________________________________________________________________

giac [B]  time = 1.06, size = 39, normalized size = 2.05 \begin {gather*} 2 \, e^{\left (625 \, x^{3} \log \relax (x) + 2650 \, x^{2} \log \relax (x) + x e^{2} \log \relax (x) + 609 \, x \log \relax (x) + 4 \, e^{2} \log \relax (x) + 36 \, \log \relax (x)\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*exp(2)*x+3750*x^3+10600*x^2+1218*x)*log(x)+(2*x+8)*exp(2)+1250*x^3+5300*x^2+1218*x+72)*exp(((4+x
)*exp(2)+625*x^3+2650*x^2+609*x+36)*log(x))/x,x, algorithm="giac")

[Out]

2*e^(625*x^3*log(x) + 2650*x^2*log(x) + x*e^2*log(x) + 609*x*log(x) + 4*e^2*log(x) + 36*log(x))

________________________________________________________________________________________

maple [A]  time = 0.10, size = 21, normalized size = 1.11




method result size



risch \(2 x^{\left (625 x^{2}+{\mathrm e}^{2}+150 x +9\right ) \left (4+x \right )}\) \(21\)
norman \(2 \,{\mathrm e}^{\left (\left (4+x \right ) {\mathrm e}^{2}+625 x^{3}+2650 x^{2}+609 x +36\right ) \ln \relax (x )}\) \(28\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*exp(2)*x+3750*x^3+10600*x^2+1218*x)*ln(x)+(2*x+8)*exp(2)+1250*x^3+5300*x^2+1218*x+72)*exp(((4+x)*exp(2
)+625*x^3+2650*x^2+609*x+36)*ln(x))/x,x,method=_RETURNVERBOSE)

[Out]

2*x^((625*x^2+exp(2)+150*x+9)*(4+x))

________________________________________________________________________________________

maxima [B]  time = 0.53, size = 38, normalized size = 2.00 \begin {gather*} 2 \, x^{36} e^{\left (625 \, x^{3} \log \relax (x) + 2650 \, x^{2} \log \relax (x) + x e^{2} \log \relax (x) + 609 \, x \log \relax (x) + 4 \, e^{2} \log \relax (x)\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*exp(2)*x+3750*x^3+10600*x^2+1218*x)*log(x)+(2*x+8)*exp(2)+1250*x^3+5300*x^2+1218*x+72)*exp(((4+x
)*exp(2)+625*x^3+2650*x^2+609*x+36)*log(x))/x,x, algorithm="maxima")

[Out]

2*x^36*e^(625*x^3*log(x) + 2650*x^2*log(x) + x*e^2*log(x) + 609*x*log(x) + 4*e^2*log(x))

________________________________________________________________________________________

mupad [B]  time = 5.09, size = 36, normalized size = 1.89 \begin {gather*} 2\,x^{625\,x^3}\,x^{2650\,x^2}\,x^{x\,{\mathrm {e}}^2}\,x^{4\,{\mathrm {e}}^2}\,x^{609\,x}\,x^{36} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(log(x)*(609*x + exp(2)*(x + 4) + 2650*x^2 + 625*x^3 + 36))*(1218*x + log(x)*(1218*x + 2*x*exp(2) + 10
600*x^2 + 3750*x^3) + 5300*x^2 + 1250*x^3 + exp(2)*(2*x + 8) + 72))/x,x)

[Out]

2*x^(625*x^3)*x^(2650*x^2)*x^(x*exp(2))*x^(4*exp(2))*x^(609*x)*x^36

________________________________________________________________________________________

sympy [A]  time = 0.43, size = 27, normalized size = 1.42 \begin {gather*} 2 e^{\left (625 x^{3} + 2650 x^{2} + 609 x + \left (x + 4\right ) e^{2} + 36\right ) \log {\relax (x )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*exp(2)*x+3750*x**3+10600*x**2+1218*x)*ln(x)+(2*x+8)*exp(2)+1250*x**3+5300*x**2+1218*x+72)*exp(((
4+x)*exp(2)+625*x**3+2650*x**2+609*x+36)*ln(x))/x,x)

[Out]

2*exp((625*x**3 + 2650*x**2 + 609*x + (x + 4)*exp(2) + 36)*log(x))

________________________________________________________________________________________