Optimal. Leaf size=18 \[ x+\frac {20 e^{5+x^2} (6+\log (3))}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {14, 2288} \begin {gather*} \frac {20 e^{x^2+5} (6+\log (3))}{x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {20 e^{5+x^2} \left (-1+2 x^2\right ) (6+\log (3))}{x^2}\right ) \, dx\\ &=x+(20 (6+\log (3))) \int \frac {e^{5+x^2} \left (-1+2 x^2\right )}{x^2} \, dx\\ &=x+\frac {20 e^{5+x^2} (6+\log (3))}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 1.00 \begin {gather*} x+\frac {20 e^{5+x^2} (6+\log (3))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 20, normalized size = 1.11 \begin {gather*} \frac {x^{2} + 20 \, {\left (\log \relax (3) + 6\right )} e^{\left (x^{2} + 5\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 26, normalized size = 1.44 \begin {gather*} \frac {x^{2} + 20 \, e^{\left (x^{2} + 5\right )} \log \relax (3) + 120 \, e^{\left (x^{2} + 5\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 1.00
method | result | size |
risch | \(x +\frac {20 \left (6+\ln \relax (3)\right ) {\mathrm e}^{x^{2}+5}}{x}\) | \(18\) |
norman | \(\frac {x^{2}+\left (20 \ln \relax (3)+120\right ) {\mathrm e}^{x^{2}+5}}{x}\) | \(22\) |
default | \(x +120 \,{\mathrm e}^{5} \sqrt {\pi }\, \erfi \relax (x )-120 \,{\mathrm e}^{5} \left (-\frac {{\mathrm e}^{x^{2}}}{x}+\sqrt {\pi }\, \erfi \relax (x )\right )+\frac {20 \,{\mathrm e}^{5} \ln \relax (3) {\mathrm e}^{x^{2}}}{x}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 70, normalized size = 3.89 \begin {gather*} -20 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{5} \log \relax (3) - 120 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{5} + \frac {10 \, \sqrt {-x^{2}} e^{5} \Gamma \left (-\frac {1}{2}, -x^{2}\right ) \log \relax (3)}{x} + \frac {60 \, \sqrt {-x^{2}} e^{5} \Gamma \left (-\frac {1}{2}, -x^{2}\right )}{x} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 18, normalized size = 1.00 \begin {gather*} x+\frac {{\mathrm {e}}^{x^2+5}\,\left (20\,\ln \relax (3)+120\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 15, normalized size = 0.83 \begin {gather*} x + \frac {\left (20 \log {\relax (3 )} + 120\right ) e^{x^{2} + 5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________