Optimal. Leaf size=21 \[ e^{e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)} \]
________________________________________________________________________________________
Rubi [F] time = 6.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right ) \left (e^{32} (-2-2 x)-50 x+20 x \log (x)-2 x \log ^2(x)\right )}{25 x-10 x \log (x)+x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \exp \left (e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right ) \left (-e^{32}-25 \left (1+\frac {e^{32}}{25}\right ) x+10 x \log (x)-x \log ^2(x)\right )}{x (5-\log (x))^2} \, dx\\ &=2 \int \frac {\exp \left (e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right ) \left (-e^{32}-25 \left (1+\frac {e^{32}}{25}\right ) x+10 x \log (x)-x \log ^2(x)\right )}{x (5-\log (x))^2} \, dx\\ &=2 \int \left (-\exp \left (e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right )-\frac {\exp \left (32+e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right ) (1+x)}{x (-5+\log (x))^2}\right ) \, dx\\ &=-\left (2 \int \exp \left (e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right ) \, dx\right )-2 \int \frac {\exp \left (32+e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right ) (1+x)}{x (-5+\log (x))^2} \, dx\\ &=-\left (2 \int \exp \left (e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right ) \, dx\right )-2 \int \left (\frac {\exp \left (32+e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right )}{(-5+\log (x))^2}+\frac {\exp \left (32+e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right )}{x (-5+\log (x))^2}\right ) \, dx\\ &=-\left (2 \int \exp \left (e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right ) \, dx\right )-2 \int \frac {\exp \left (32+e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right )}{(-5+\log (x))^2} \, dx-2 \int \frac {\exp \left (32+e^{-\frac {e^{32}}{-5+\log (x)}} (-2-2 x)-\frac {e^{32}}{-5+\log (x)}\right )}{x (-5+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.63, size = 20, normalized size = 0.95 \begin {gather*} e^{-2 e^{-\frac {e^{32}}{-5+\log (x)}} (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 46, normalized size = 2.19 \begin {gather*} e^{\left (-\frac {2 \, {\left ({\left (x + 1\right )} \log \relax (x) - 5 \, x - 5\right )} e^{\left (-\frac {e^{32}}{\log \relax (x) - 5}\right )} + e^{32}}{\log \relax (x) - 5} + \frac {e^{32}}{\log \relax (x) - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (x \log \relax (x)^{2} + {\left (x + 1\right )} e^{32} - 10 \, x \log \relax (x) + 25 \, x\right )} e^{\left (-2 \, {\left (x + 1\right )} e^{\left (-\frac {e^{32}}{\log \relax (x) - 5}\right )} - \frac {e^{32}}{\log \relax (x) - 5}\right )}}{x \log \relax (x)^{2} - 10 \, x \log \relax (x) + 25 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.86
method | result | size |
risch | \({\mathrm e}^{-2 \left (x +1\right ) {\mathrm e}^{-\frac {{\mathrm e}^{32}}{\ln \relax (x )-5}}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 29, normalized size = 1.38 \begin {gather*} e^{\left (-2 \, x e^{\left (-\frac {e^{32}}{\log \relax (x) - 5}\right )} - 2 \, e^{\left (-\frac {e^{32}}{\log \relax (x) - 5}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.28, size = 30, normalized size = 1.43 \begin {gather*} {\mathrm {e}}^{-2\,x\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{32}}{\ln \relax (x)-5}}}\,{\mathrm {e}}^{-2\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{32}}{\ln \relax (x)-5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.24, size = 17, normalized size = 0.81 \begin {gather*} e^{\left (- 2 x - 2\right ) e^{- \frac {e^{32}}{\log {\relax (x )} - 5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________