Optimal. Leaf size=25 \[ 5-25 e^x-\left (-4+\frac {5}{x}-\frac {\log (4)}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 22, normalized size of antiderivative = 0.88, number of steps used = 4, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {14, 2194, 37} \begin {gather*} -\frac {(-4 x+5-\log (4))^2}{x^2}-25 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 37
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-25 e^x+\frac {2 (-5+\log (4)) (-5+4 x+\log (4))}{x^3}\right ) \, dx\\ &=-\left (25 \int e^x \, dx\right )+(2 (-5+\log (4))) \int \frac {-5+4 x+\log (4)}{x^3} \, dx\\ &=-25 e^x-\frac {(5-4 x-\log (4))^2}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 1.16 \begin {gather*} -25 e^x-\frac {8 (-5+\log (4))}{x}+\frac {(5-\log (4)) (-5+\log (4))}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 32, normalized size = 1.28 \begin {gather*} -\frac {25 \, x^{2} e^{x} + 4 \, {\left (4 \, x - 5\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} - 40 \, x + 25}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 32, normalized size = 1.28 \begin {gather*} -\frac {25 \, x^{2} e^{x} + 16 \, x \log \relax (2) + 4 \, \log \relax (2)^{2} - 40 \, x - 20 \, \log \relax (2) + 25}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 30, normalized size = 1.20
method | result | size |
risch | \(\frac {\left (-16 \ln \relax (2)+40\right ) x -4 \ln \relax (2)^{2}+20 \ln \relax (2)-25}{x^{2}}-25 \,{\mathrm e}^{x}\) | \(30\) |
norman | \(\frac {\left (-16 \ln \relax (2)+40\right ) x -25 \,{\mathrm e}^{x} x^{2}-4 \ln \relax (2)^{2}+20 \ln \relax (2)-25}{x^{2}}\) | \(32\) |
default | \(-\frac {25}{x^{2}}+\frac {40}{x}+\frac {20 \ln \relax (2)}{x^{2}}-\frac {4 \ln \relax (2)^{2}}{x^{2}}-\frac {16 \ln \relax (2)}{x}-25 \,{\mathrm e}^{x}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 38, normalized size = 1.52 \begin {gather*} -\frac {16 \, \log \relax (2)}{x} - \frac {4 \, \log \relax (2)^{2}}{x^{2}} + \frac {40}{x} + \frac {20 \, \log \relax (2)}{x^{2}} - \frac {25}{x^{2}} - 25 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 27, normalized size = 1.08 \begin {gather*} -25\,{\mathrm {e}}^x-\frac {x\,\left (16\,\ln \relax (2)-40\right )+{\left (2\,\ln \relax (2)-5\right )}^2}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 31, normalized size = 1.24 \begin {gather*} - 25 e^{x} - \frac {x \left (-40 + 16 \log {\relax (2 )}\right ) - 20 \log {\relax (2 )} + 4 \log {\relax (2 )}^{2} + 25}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________